\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

Preface

General References

 

  • [SW] Gravitation and Cosmology, S. Weinberg, John Wiley, 1972;
  • [MTW] Gravitation, C. W. Misner, K. S. Thorne, and J. A. Wheeler, W.H. Freeman, 1973;
  • [FK] Geometric algebra techniques for general relativity, M.R. Francis and A. Kosowsky, Annals of Physics 311, 459-502, 2004;
  • [JY] Einstein’s vierbein field theory of curved space, J. Yepez, arXiv:1106.2037, 2011; includes Einstein’s original articles on vierbeins in English translation;
  • [JS] A new approach to differential geometry using Clifford’s geometric algebra, J. Snygg, Birkhäuser, 2012;
  • [DL] Geometric Algebra for Physicists, C. Doran and A. Lasenby, Cambridge University Press, 2013;
  • [DR] A Geometric Rather than Algebraic Approach to Geometric Algebra and Calculus with Applications to Electrodynamics and Relativity, D. R. Rowland, researchgate.net, 2016;
  • [JCS] Geometric calculus on pseudo-Riemannian manifolds, J.C. Schindler, arXiv:1911.07145, 2019;
  • [CK] The Dirac Equation in Curved Spacetime: A Guide for Calculations, P. Collas and D. Klein, Springer, 2019;
  • [DH] Curvature Calculations with Spacetime Algebra, D. Hestenes, Int. J. Theor. Phys. 25, 1986; Spacetime Geometry with Geometric Calculus, D. Hestenes, Adv. Appl. Clifford Algebras 30, 2020;
  • [DLE] The Equivalence Principle(s), D. Lehmkuhl, The Routledge Companion to Philosophy of Physics, 2021;
  • [JB] A pedagogical review of gravity as a gauge theory, J. Bennett, arXiv:2104.02627, 2021;
  • [KL} Foundations of General Relativity, K. Landsman, Radboud University Press, 2023;
  • [LS] General Relativity, The Theoretical Minimum, L. Susskind and A. Cabannes, Penguin Books, 2023;
  • [PDK] General Relativity: New insights from a Geometric Algebra approach, P. B. Pérez and M. DeKieviet, arXiv:2404.19682v1, 2024; Differential Forms vs Geometric Algebra: The quest for the best geometric language, P. B. Pérez and M. DeKieviet, arXiv:2407.17890v1, 2024.
  

Text © 2025 Ch.G. van Weert

  Creative Commons Attribution 4.0 License (CC BY-SA 4.0)