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Chapter 1

QUANTUM STATISTICAL
MECHANICS

The problem to explain macroscopic phenomena in terms of the properties of the micro-
scopic constituents of matter is basically a quantum-mechanical one. Not only is quantum
mechanics, rather than classical mechanics, believed to be the correct description at the
atomic and subatomic scale, but also many macroscopic phenomena are evidently of a
quantum nature. For example, superconductivity and superfluidity are of quantum origin,
while more generally the third law of thermodynamics is a quantum law.

At the microscopic level the properties of a many-particle system are described by
the wave function and the Schrödinger equation that determines the behaviour of the
assembly in time. However, in view of the huge number (∼ 1024) of particles, the detailed
specification of the initial state and the solution of this equation would too complex to even
be contemplated. Even if one could solve the problem with the aid of a supercomputer,
the solution would be so complicated as to be completely unintelligible. What is needed
foremost is a precise characterization of a set of state variables relevant to macroscopic
systems.

In the following we will often use some notations borrowed from relativity theory. A
space-time point will be indicated as x = xµ = (t,x), µ = 0, 1, 2, 3, and particle energy-
momentum as p = pµ = (p0,p). Gradient and time derivative are sometimes combined:
∂µ = (∂t,∇), ∂µ = (∂t,−∇). Furthermore, we will often write x.p = xµp

µ = xµpµ for
tp0 − x.p, and use the Einstein convention. Natural units h̄ = c = kB = 1 are adopted
throughout.

1.1 Observables and States

We start by introducing two concepts for describing an arbitrary system in the most basic
terms, namely those of observable and state [1].

An observable represents a quantity which may, in principle, be measured. In quantum
mechanics there is a one-to-one correspondence between the observables A of a system,
and the self-adjoint operators Â acting on a Hilbert space H. In an axiomatic context
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the quantum mechanical system is specified by giving an algebra of operators A whose
observables (i.e. the self adjoint elements) correspond to the given physical system.

A state, on the another hand, is a statistical quantity which serves to determine the
expectation values ρ(A) of the observables, should any of them be measured. Hence we
may describe states, in a general manner, as functionals of the observables, which yield
their expectation values under specified experimental conditions. These conditions are
controlled by external parameters which may correspond to system volume, gravitational
field, temperature, density, etc. Now in standard quantum mechanics of finite systems,
i.e. systems confined to a volume V , pure states are represented by normalized vectors
|ψ > in a Hilbert space H. The expectation value in this state is defined as

ρψ (A) =< ψ|Â|ψ > . (1.1)

The quantum mechanical description of a physical system is therefore defined by the
Hilbert-space representation of its states and observables. For a many-particle system it
is beyond experiment to determine any unique micro-state of the system. The available
information is usually compatible with very many micro-states |ψk >, k = 1, 2, . . . , with
respective probabilities pk. The expectation value of an observable is then defined as

ρ (A) =
∑
k

pkρk(A) =
∑
k

pk < ψk|Â|ψk > . (1.2)

Inserting a complete set of states we get

ρ(A) = Trρ̂Â, (1.3)

where the trace may be taken with respect to any arbitrary complete set of states. The
density operator defined by

ρ̂ =
∑
k

|ψk > pk < ψk| (1.4)

corresponds to a statistical mixture of pure states which is generally termed a mixed state,
or an ensemble of states. It important to note that the set |ψk > need not to be defined in
terms orthonormal states. Any state can be represented in the form (1.4), and it follows
that the correspondence between ρ and ρ̂ is one-to-one. Note that (1.3) has the form of an
inner product; hence states and observables can be pictured as belonging to dual vector
spaces.

Exercise 1.1

a. Using pk ≥ 0 and Σpk = 1, show that ρ̂ is a density operator, i.e. a positive operator
of unit trace.

b. Show that a pure state is characterized by ρ̂ being idem-potent, i.e. ρ̂2 = ρ̂.

c. Verify that Trρ̂2 < 1 for a mixed state.
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It is important to note that ρ̂ contains two different aspects of probability: that inher-
ent in quantum mechanics itself, as well as that associated with incomplete information
regarding the state of the system. In most cases it is extremely difficult to distinguish
between the two. Indeed even for a microscopic system the infinite extent of the relevant
Hilbert space usually renders complete specification of ρ̂ impossible.

In the Schrödinger picture the state of the system evolves according to a one-parameter
group of unitary transformations

ρ̂t = e−iĤtρ̂eiĤt, (1.5)

and the time dependence of the expectation value of an observable is therefore

ρt(A) = Trρ̂tÂ. (1.6)

The self-adjoint generator Ĥ of the transformation ρ → ρt is termed the Hamiltonian of
the system. In principle, it is a state-dependent quantity, its form being governed by the
state ρ as well as the interactions in the system. For conservative systems, Ĥ represents
the energy variable.

One can equally well describe the dynamics in the Heisenberg picture where the evo-
lution of the system corresponds to a unitary transformation of the observables:

Ât = eiĤtÂe−iĤt. (1.7)

It follows that Ât satisfies the Heisenberg equation of motion

∂tÂt = i[Ĥ, Ât]. (1.8)

The identity
ρt(A) = ρ(At) (1.9)

expresses the equivalence of the two pictures.

Exercise 1.2

Derive (1.9) and determine the time dependence of Trρ̂−tÂt.

1.2 Equilibrium

When the available information about the system is very incomplete, one must make
optimum use of whatever information can be obtained. In any case, the probability dis-
tribution {pk} characterizing the density operator (1.4) must be such that the expectation
values of the relevant observables agree with the actually measured values. A system in
equilibrium is characterized by its extensive conserved quantities comprising the energy

E = ρ(H) (1.10)
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and a finite number of charges
Na = ρ(Qa), (1.11)

a = 1, 2, . . .. In thermodynamics it is assumed that these conserved quantities form a
complete macroscopic description of the equilibrium state in the following sense: given
the values (E,Na) there is precisely one equilibrium state ρeq. This state is the one that
maximizes the entropy of the system. In quantum statistical mechanics the entropy is
defined as the following functional of the state:

S[ρ] = −Trρ̂ log ρ̂. (1.12)

This is just the quantum-mechanical version of the original definition put forward by
Gibbs.

Exercise 1.3

a. Argue that the entropy can be written as

S[ρ] = −
∑
n

wn log wn, (1.13)

where {wn} are the eigenvalues of ρ̂. (Positive Hermitian operators of finite trace
can be diagonalized and have purely discrete spectra.)

b. Show that, without constraints, S is maximal for a distribution of equal probabili-
ties, and minimal for any pure state.

The maximum entropy principle allows the determination of a unique density operator
ρ̂eq compatible with the available experimental information given by (1.10) and (1.11). It
is the solution of the variational equation

δS = 0 (1.14)

subject to the constraints

Trδρ̂ = 0 , Trδρ̂ Q̂a = 0, Trδρ̂Ĥ = 0. (1.15)

The variational problem is easily solved with the help of the Lagrange-multiplier method.
The result is that ρ̂eq is equal to the (grand) canonical density operator

ρ̂c = exp
(
Φ− αaQ̂a − βĤ

)
(1.16)

with the Lagrange multipliers (Φ, αa, β) corresponding to the constraints imposed. In
particular, the normalization yields the thermodynamic potential

Φ (αa, β, V ) = − log Tr exp
(
−αaQ̂a − βĤ

)
= − log Z, (1.17)
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in terms of the partition function Z. For the entropy of the equilibrium state we get

S[ρc] = αaNa + βE − Φ (1.18)

on account of (1.10)–(1.12), and (1.16). We mention that one often characterizes the
system in terms of the grand potential Ω which is related to the thermodynamic potential
Φ by Φ = βΩ.

We note that the above reasoning is quite general, and can easily be extended to the
case that the information about the system is given in the form of expectation values of
any number of hermitian operators. Possible non-commutativity of the operators presents
no difficulty in carrying out the variational procedure, and the method of Lagrange mul-
tipliers leads to a statistical density operator of the canonical form. This is the Gibbs
algorithm for constructing a statistical operator when the available information is only
macroscopic and much less than complete. The canonical operator does not so much rep-
resent the actual state of the system as the most likely state consistent with observations.
In fact the maximum entropy principle is nothing but the postulate of equal a priori
probabilities applied to the case when information is available regarding the expectation
values of a number of operators which are constants of the motion [2]; see also 1.2.

We still have to show that the equilibrium state corresponds to a maximum. Instead
we will now demonstrate that the canonical state of a finite system is uniquely determined
by the thermodynamic stability condition that it minimizes the functional

Φ[ρ] = Trρ̂
(

log ρ̂+ αaQ̂a + βĤ
)
. (1.19)

By eqs. (1.16) and (1.19)

Φ(αa, β, V ) = Trρ̂
(

log ρ̂c + αaQ̂a + βĤ
)

(1.20)

from which it follows that

Φ[ρ]− Φ(αa, β, V ) = Trρ̂ log ρ̂/ρ̂c ≥ 0 (1.21)

which is the Gibbs inequality.

Exercise 1.4

Use the fact that x log x ≥ x − 1 is a strictly convex function of the positive real
variable x to derive the Gibbs inequality. See ref [1].

1.3 Thermodynamics

Let us now consider the variations

δΦ = Naδαa + Eδβ +
∂Φ

∂V
δV, (1.22)
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δS = αaδNa + βδE − ∂Φ

∂V
δV, (1.23)

implied by (1.17) and (1.18). By identifying the last equation with the Gibbs relation
of classical thermodynamics, we can attach the following thermodynamic meaning to the
Lagrange multipliers:

αa = −βµa, (1.24)

β = T−1, (1.25)

βP = −∂Φ

∂V
= −Φ

V
. (1.26)

Here P is the pressure, T the temperature, and µa the chemical potential associated with
the charge Q̂a. We have taken it for granted that Φ is extensive (up to a surface effect)
like S,E,Na. This can in fact be established for finite assemblies of particles with realistic
interactions, that is, interactions which are repulsive at short distances and fall off fast
enough at large distances to ensure that the energy is an extensive variable.

Exercise 1.5

a. Write equation (1.18), which in thermodynamics is known as the Euler relation,
and the Gibbs relation (1.23) in terms of the intensive densities na = Na/V, e =
E/V, s = S/V .

b. Derive the Gibbs-Duhem relation:

δP = naδµa + sδT. (1.27)

The above formulae show that the conserved global densities and the Lagrange multipliers
are two sets of conjugate variables. Indeed, writing Ai = (Na, E) and αi = (αa, β), we
have

∂Φ

∂αi
= Ai,

∂S

∂Ai
= αi. (1.28)

This implies that the thermodynamic potential Φ is a Massieu function, i.e. a Legendre
transform of the entropy; see equation (1.18).

The existence of the partition function Z, and hence the absolute convergence of the
trace in (1.17), implies that Z is an analytic function of the Lagrange multipliers. Indeed,
if Z (α) exists for a range of real values α = {αi} of the Lagrange multipliers, then the
partition function also exists for a corresponding range of complex values on account of

|Z (α + iγ)| ≤ Z (α) . (1.29)

Since the partition function, being a sum of positive terms, cannot have zeros for real
values α, the thermodynamic potential Φ is an analytic function near the real axis for
finite volume systems.

It is also easy to show that the thermodynamic potential is a concave function. Let
us look at the response of the thermodynamic densities due to a change of the Lagrange
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multipliers. The static susceptibility matrix χij which measures this response, is defined
by

β−1χij = −∂Ai
∂αj

= − ∂2Φ

∂αi∂αj
. (1.30)

Thermodynamic stability requires this matrix to be positive

λ∗iχijλj ≥ 0, (1.31)

for arbitrary λi. This follows immediately when we compute the static susceptibility from
statistical mechanics, i.e. formula (1.17). Taking derivatives with respect to the Lagrange
multipliers we get

χij = βTrρ̂cδÂiδÂj, (1.32)

where δÂi = Âi − Trρ̂cÂi is the so-called fluctuation of Âi = (Q̂a, Ĥ). (To avoid com-
plications due to non-commutivity of the operators, we have assumed here that Q̂a, Ĥ
are mutually commuting.) We conclude that the second derivative of the thermodynamic
potential with respect to any parameter is always negative. This means that the thermo-
dynamic potential is a concave function of these parameters:

Φ (λαi + (1− λ)α′i) ≥ λΦ (αi) + (1− λ) Φ (α′i) (1.33)

for all allowed values αi, α
′
i and 0 < λ < 1. As a consequence, Φ cannot support a discon-

tinuity in the interior of the range of its arguments. However, it can have a discontinuous
derivative. This implies that the necessary and sufficient condition for the uniqueness of
the equilibrium state is the differentiability of the thermodynamic potential [1].

Now, the non-differentiability of the thermodynamic potential with respect to some
of the parameters, and the existence of two or more equilibrium states, is the distinctive
feature of a phase transition. The above reasoning implies that phase transitions in a
finite volume system are not possible. On the other hand, since the limit of a sequence of
analytic functions is not necessarily analytic, the thermodynamic potentials of an infinite
system might have singularities as a manifestation of phase transitions. This may happen
if the complex zeros of the partition function pinch the real parameter axis in the infinite-
volume limit. In discussing phase transitions it is important, therefore, to introduce the
notion of the thermodynamic limit.

We encounter here a fundamental problem of statistical mechanics, namely that the
canonical ensemble as defined for a finite system, cannot describe phases of matter that
are quantitatively different. For example, ferromagnetic systems have a spontaneous
magnetization below the Curie temperature. When spontaneous magnetization is present,
the Hamiltonian of the system is invariant under a transformation that changes the sign of
the magnetization. However the state of the system is not invariant. When this happens
one says that the symmetry is spontaneously broken. This is a situation which typifies a
class of phase transitions.

Spontaneous symmetry breaking seems in conflict with the principles of statistical
mechanics. Indeed, if the Hamiltonian is invariant under some symmetry transformation

ĜĤĜ−1 = Ĥ (1.34)
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the canonical state necessarily exhibits the same symmetry

Ĝρ̂cĜ
−1 = ρ̂c. (1.35)

(It is assumed that charges are not affected by symmetry transformations). For an in-
finite system this need not to be true, since ρ̂c has only formal meaning in this limit.
Again it seems that the infinite volume limit provides a framework for describing phase
transitions characterized not only by singularities in the thermodynamic functions, but
also by changes in macroscopic structure, e.g. of symmetry.

These questions will be discussed in more detail later on. First we shall provide some
technical background on operator algebras and field theory that will be needed in the
sequel.
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Chapter 2

OPERATOR ALGEBRA

Having considered quantum statistical mechanics (QSM) of a finite system in terms of
the standard Hilbert space description and canonical ensemble, we shall now set up a
formalism that can be generalized to infinite systems and field theory. The idealization
of the system as an infinite assembly of particles, whose density is finite, exposes in sharp
relief certain intrinsic properties of matter that would otherwise be masked by finite size-
effects. It is only by passing to the infinite volume limit that one can characterize phase
transitions by singularities in the thermodynamic potentials. The formalism also admits
theories of phase transitions, characterized not only by thermodynamic singularities, but
also by symmetry breakdown corresponding to a certain ”macroscopic degeneracy”. This
will be essential for an understanding of the phenomena of superconductivity and super-
fluidity.

2.1 Algebraic description

First it is noted that by basing QSM on bounded operators, we can introduce an algebraic
structure [1]. We recall that an operator is termed bounded if its norm

||Â|| = sup||Âf || (2.1)

exists, as f runs through the normalized vectors of H. Furthermore, we note that since
bounded operators are defined on all vectors of H, it follows that the set U of these
operators has an algebraic structure: if λ is a complex number and Â, B̂ belong to U ,
then λÂ, Â + B̂, ÂB̂, and Â† all belong to U . In view of these properties U is called a
*-algebra (star algebra), the star referring to the fact that U is closed with respect to
Hermitian conjugation.

In physics one often has to deal with unbounded operators, e.g. Ĥ. However, one can
always express unbounded operators as strong limits Â = lim ÂN , N → ∞, of bounded
ones. Hence, we may confine ourselves to bounded observables, without loss of physical
content because real measurements yield of course finite results.

We further specify the algebra by introducing the notion of a local operator. We will
assume that all relevant observables pertinent to a system enclosed in a bounded open
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spatial region V are given as space integrals of bounded local ones:

Â =
∫
V

d3x â (x) . (2.2)

It follows that if V ⊂ V ′, then U(V ) ⊂ U(V ′). The algebra is said to be isotonic with
respect to V .

We require local commutativity which means that if V and V ′ are disjoint the elements
of U(V ) commute with those of U(V ′). This ensures that observables in disjoint regions
can be measured simultaneously.

The algebra will be equipped with a group of automorphisms (i.e. transformations
that preserve the algebraic structure) which represent space translations

â (x) = e−iP̂.xâeiP̂.x, (2.3)

or infinitesimally
δj â (x) = −i

[
P̂j, â (x)

]
. (2.4)

The generator P̂ is called the total momentum. For a finite system P̂ is not necessar-
ily conserved, i.e. it does not necessarily commute with Ĥ. By imposing appropriate
boundary conditions on the states, e.g. a box with periodic boundary condition, ma-
trix elements of the commutator can be made to vanish (see section 2.4). We formulate
this as a property of the algebra; the interaction between the particles is described by a
Hamiltonian which is translationally invariant:

δjĤ = −i[P̂j, Ĥ] = 0 (2.5)

The Hamiltonian generates the time translate of a local operator according to

â (t,x) = eiĤtâ (x) e−iĤt, (2.6)

or
δ0â(x) = i[Ĥ, â(x)]. (2.7)

Exercise 2.1

Show that the dynamics and space translations can formally be represented by the
’covariant’ Heisenberg equation of motion

i∂µâ(x) = [â(x), P̂µ], (2.8)

where ∂µ = (∂t,∇), x = (t,x) and P̂µ = (Ĥ,−P̂).

The structure of the operator algebra as described above applies to bounded local opera-
tors for arbitrary regions V . This structure is now carried over to the infinite system by
forming the union U of all local algebras [1].
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Since states assign numbers to observables, the states of the infinite system are as-
sumed to be functionals of the local observables â for which the limit

ρ (a) = lim
V→∞

(Trρ̂â)V (2.9)

â ∈ U(V ), exists. It follows that these states, like those of the finite system, possess the
properties of linearity, normalization, and positivity, that is,

ρ(λa+ µb) = λρ(a) + µρ(b), (2.10)

ρ(I) = 1, (2.11)

ρ(a†a) ≥ 0. (2.12)

In other words, states preserve addition, scale, and positivity.
Equilibrium states, in particular, are characterized by the Kubo-Martin-Schwinger, or

KMS, condition

ρ(atb) = ρ(bat+iβ). (2.13)

which plays an important role in axiomatic QSM. The form (2.13) is valid if the conserved
charges commute with both a and b.

Exercise 2.2

a. Use the cyclical property of the trace to show that the canonical density operator
(1.16) satisfies the KMS condition.

b. Then try to show that the converse is also true [1].

Within the context of the algebraic description the KMS condition is carried over
to the infinite system as a key property of its equilibrium states. The KMS condition
may then be precisely stated in the following form: for each pair of local observables a, b
there is a function f(z) that is analytic in the strip 0 < Im z < β and continuous on its
boundaries such that

f(t) = ρ(bat), (2.14)

f(t+ iβ) = ρ(atb), (2.15)

for real t. The advantage of this formulation is that we avoid reference to complex-time
translates, which are not always definable for infinite systems.

2.2 Local Conservation Laws

Conservation laws in physics are attributed to symmetry principles. The invariance of
the physical system under certain symmetry transformations implies an appropriate set
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of conservation laws. Familiar examples are: time translation invariance ↔ energy con-
servation, and spatial translation invariance ↔ momentum conservation.

In quantum mechanics a conservation law is equivalent to the statement that the cor-
responding operator commutes with Ĥ. For example, conservation of particle number
means that the number operator N̂ commutes with Ĥ : δ0N̂ = i[Ĥ, N̂ ] = 0. The corre-
sponding symmetry is called rigid gauge invariance, i.e. the invariance of all observables
under the transformation

âλ = e−iλN̂ âeiλN̂ (2.16)

with λ a constant. The fact that observables are gauge invariant means that they all
commute with N̂ . This leads to a superselection rule. Namely, the Hilbert space splits up
into different sectors each labelled by different eigenvalues of N̂ . Physical states lie entirely
in these sectors, that is, the superposition principle of ordinary quantum mechanics does
not apply to vectors belonging to different sectors. Such superselection rules always
occur whenever an operator exists that commutes with all observables. Another example
is the superselection rule forbidding the superposition of bosonic and fermionic states.
In the abstract algebraic approach adopted in this chapter superselection rules can be
incorporated in a most natural manner [2].

Let us now assume that the global generators can be written as local integrals:

N̂ =
∫
d3x ĵ0(x) (2.17)

Ĥ =
∫
d3x t̂00(x) (2.18)

P̂ i =
∫
d3 xt̂0i(x), (2.19)

where the integrands are the particle density n̂(x) = ĵ0(x), the energy density ê(x) =
t̂00(x), and the momentum density t̂0i(x) = t̂i0(x), respectively. To ensure that the global
quantities are indeed constants of the motion, we require that the local densities satisfy
the local conservation laws

∂µĵ
µ(x) = 0, (2.20)

∂µt̂
µν(x) = 0, (2.21)

where ĵi is the particle current density, and t̂ij = t̂ji the microscopic pressure tensor. The
time derivative of the generators (2.17) through (2.19) then equals a surface integral which
can be made to vanish by imposing suitable boundary conditions; see the next section
below.

We note in passing that the formal expressions (2.17)–(2.19) for the global generators
are undefined in the thermodynamic limit. However, commutators with these quantities
usually exist provided that we commute first and then perform the integration.

The local conservation laws and the known effect of the generators on local observ-
ables can be used to put some constraints on equal time commutators between the local
densities. Two examples are considered in exc.2.3.
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Exercise 2.3

Check that the commutator functions

[ĵ0(x), ĵ0(x′)] = 0, (2.22)

i[ĵ0(x), t̂00(x′)] = ĵ(x′).∇δ(x− x′), (2.23)

are compatible with the conservation laws, and the fact that N̂ and Ĥ are the
generators of gauge transformations and time translations, respectively.

However, such equal-time commutation relations are not unique, because one can
always add terms involving higher derivatives of the δ-function which vanish upon spatial
integration. Terms of this type are called Schwinger terms. Their occurrence cannot
always be avoided; this depends on the model under consideration.

Other commutators may be constructed by a similar reasoning. For example, the naive
expression for the current/momentum density commutator consistent with locality and
conservation laws is

i[ĵ0(x), t̂0i(x′)] = −ĵ0(x′)∂iδ(x− x′), (2.24)

where ∂i = −∇i. In the non-relativistic theory the momentum density is equal to the
mass current: t0i = mji. Therefore, we may also conclude

i
[
n̂ (x) , ĵ (x′)

]
=

1

m
n̂ (x′)∇δ (x− x′) . (2.25)

One further example is

i
[
t̂00 (x) , t̂00 (x′)

]
=
[
t̂0j (x) + t̂0j (x′)

]
∇jδ (x− x′) . (2.26)

For the full list of equal-time commutator expressions that can be derived in this manner
we refer to the literature [3].

2.3 Field Theory

We now describe an explicit construction of the local algebra in accordance with the above
requirements. The experience with the quantization of point-mechanical systems suggests
that we should look for a description of the theory in terms of conjugate pairs of variables
whose equal-time commutator rules we expect to be of the form

[φ̂(x), π̂(x′)] = iδ(x− x′) (2.27)

with the commutators [φ̂, φ̂] and [π̂, π̂] vanishing. These relations would be the analogue
of the canonical commutation relations for a theory with a continuous infinity of degrees
of freedom, that is, a field theory.
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Let us now try to express the particle number and total momentum operator in terms
of such fields. Trial leads to

N̂ = −i
∫
d3x π̂(x)φ̂(x), (2.28)

P̂ =
∫
d3x π̂(x)∇φ̂(x). (2.29)

One may check that these two operators commute and that the integrands indeed repro-
duce the local equal-time commutator (2.24). Hence, the canonical commutator (2.27)
can be regarded as a consistency requirement on the formalism. Actually one may verify
that if the canonical commutation relations are replaced by anti-canonical commutation
relations, the latter would also guarantee the same consistency. The physics decides on
the correct choice for the system under consideration, that is, whether the system consists
of bosons or fermions.

Exercise 2.4

a. Determine
δλφ̂ = iλ[N̂ , φ̂], δλπ̂ = iλ[N̂ , π̂] (2.30)

with the help of the identity

[A,BC]− = [A,B]±C −B[C,A]±. (2.31)

b. Show that the generator of rigid gauge transformations N̂ adds a phase factor to
the field operators.

In non-relativistic field theory one describes the observables in terms of a quantized field
ψ̂(x), called the Schrödinger field, and its hermitian adjoint which satisfy the canonical
commutation or anti-commutation relation

[ψ̂(x), ψ̂†(x′)]± = δ(x− x′) (2.32)

according to whether the system consists of fermions or bosons. This immediately iden-
tifies π̂(x) = iψ̂†(x) as the conjugate momentum. Hence

N̂ =
∫
d3x ψ̂†(x)ψ̂(x), (2.33)

P̂ = − i
2

∫
d3x ψ̂†(x)

↔
∇ ψ̂(x). (2.34)

The gradient in the last formula corresponds to the replacement p → −i∇, or better

p →
↔
∇ /2i,where

↔
∇ is the difference of the gradient operator acting to the right and

left:
↔
∇ :=

→
∇−

←
∇. This prescription automatically ensures the hermiticity of the local

observables. The above immediately suggests that for the free Hamiltonian we write

Ĥ0 =
∫
d3x ψ̂ (x) ε(

↔
∇ /2i)ψ̂ (x) (2.35)
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where ε(p) = p2/2m is the kinetic energy of a free particle.

Exercise 2.5

Check the commutator
[Ĥ0, ψ̂(x)] = ε(−i∇)ψ̂(x) (2.36)

for both statistics.

Making use of the result of exc. 2.5, we conclude that the Heisenberg equation for the
free field takes the form

[i∂t − ε(−i∇)]ψ̂(t,x) = 0. (2.37)

This simple equation, together with the (anti-)commutation relations, completely specifies
the dynamic behaviour of a system consisting of an arbitrary number of free bosons or
fermions.

2.4 Momentum space

Since the system is supposed to be translationally invariant, it is convenient to introduce
a decomposition into plane waves characterized by momentum vectors p. We assume the
system to be in a large box of volume V = L3, and impose periodic boundary conditions.
The allowed discrete values of the momentum p are then p = 2πn/L, where n is a vector
with discrete components 0,±1,±2, . . .. With respect to these discrete states the field
operator is expanded as

ψ̂ (x)
1√
V

∑
p

eip.xâp. (2.38)

The (anti-)commutation relations (2.32) are fulfilled if we require the momentum operators
to satisfy [

âp, â
†
p′

]
±

= δpp′ (2.39)

This may be verified with the help of the identity

δ (x) =
1

L

∑
n

e−i
2πnx
L (2.40)

valid in the interval 0 < x < L.

Exercise 2.6

a. Express the observables N̂ , P̂, and Ĥ0 in terms of the momentum operators.

b. Verify explicitly that these operators are mutually commuting.

c. Obtain the solution
âp(t) = âpe

−iωt (2.41)

of the free Heisenberg equation. Determine the energy ω.
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In the thermodynamic limit the sum over the discrete momenta becomes an integral
according to ∑

p

→ V

(2π)3

∫
d3p, (2.42)

and the Kronecker delta a δ-function according to

V δpp′ → (2π)3δ (p− p′) . (2.43)

If we now define momentum operators â (vecp) = âp
[
V/ (2π)3

]1
2 , we may write the ex-

pansion (2.38) of the field operator as a Fourier integral

ψ̂ (x) = (2π)−3/2
∫
d3p eip.xâ (p) (2.44)

in terms of momentum operators satisfying the (anti-)commutation rule

[â(p), â†(p′)]± = δ(p− p′). (2.45)

Before closing this section we like to make one last remark about the infinite-volume limit
implicit in the Fourier representation (2.44). In statistical mechanics it is often essential
that this limit is taken last, after all other calculations have been performed. When using
the continuous representation for convenience one should be aware that an interchange of
limits is involved which may not always be harmless. A case in point is Bose condensation.

2.5 Thermodynamic Wick Theorem

It is illuminating to compute the statistical average

< â† (p) â (p′) >0= Z−1
0 Tr

[
eβ(µN̂−Ĥ0)â† (p) â (p′)

]
(2.46)

with respect to the (grand) canonical density operator for a free system. This average,
normalized by Z0, is easily calculated because the cyclic invariance of the trace allows us
to write

< â† (p) â (p′) >0=< â (p′) â† (p, β, µ) >0, (2.47)

where we used the abbreviation

â† (p, β, µ) = eβ(µN̂−Ĥ0)â† (p) e−β(µN̂−Ĥ0). (2.48)

In consequence of the simple commutation rules of â†(p), both with N̂ and Ĥ0

[N̂ , â†(p)] = â†(p), (2.49)

[Ĥ0, â
†(p)] = ε(p)â†(p), (2.50)
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and the general formula

eABe−A = B + [A,B]− + 1
2

[A, [A,B]−]− + . . . , (2.51)

we obtain
â†(p, β, µ) = â†(p)eβ(µ−ε). (2.52)

We substitute this result back into (2.47) and use the (anti-)commutation rules (2.45).
Solving for the desired expectation value we get

< â†(p)â(p′) >0= δ(p− p′)n(ε), (2.53)

where n(ε) is the Fermi-Dirac distribution function in the case of fermions and the Bose-
Einstein distribution function in the case of bosons, respectively:

n (ε) =
1

exp β (ε− µ)± 1
. (2.54)

Hence, in equilibrium, the expectation value (2.53) is diagonal and can be interpreted as
the probability density for finding a particle with energy ε(p).

Exercise 2.7

a. Argue that the essential piece of information needed to derive (2.53) is contained in
the KMS condition

< â(t,p)â†(p′) >0=< â†(p′)â(t+ iβ,p) >0 e
−βµ. (2.55)

b. Extend the reasoning to obtain

< â† (p1) . . . â† (pn) â (p′n) . . . â (p′1) >0

=
n∑
j=1

< â† (p1) â
(
p′j
)
>0< â† (p2) . . . â† (pn) â (p′n) . . .

â
(
p′j
)
. . . â (p′1) >0 (2.56)

for bosons. How would this formula read for fermions?

c. Show that on account of the gauge invariance of the canonical ensemble

< â(p)â(p′) >0= 0, (2.57)

and that the average of an odd number of operators vanishes.

The recursion relation derived above implies that the equilibrium average of products
of momentum operators factorizes:

< â†(p1) . . . â† ˆ(pn)â(p′n) . . . â(p′1) >0

=
∑
P

(±1)P
n∏
j=1

< â† (pj) â
(
p′j
)
>0 . (2.58)
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The sum runs over all permutations P of the labels of the primed (or unprimed) variables,
and the sign factor is the parity of the permutation in the case of fermions. The permu-
tations preserve the Bose symmetry or Fermi antisymmetry of the left-hand side. The
factorization rule, together with (2.53), is known as the thermodynamic Wick theorem.
It only holds in the absence of interactions and expresses the fact that states of an ideal
system are uncorrelated, except for the correlations induced by the statistics.
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Chapter 3

BROKEN SYMMETRY

There is a class of phase transitions which is associated with the spontaneous breaking of a
continuous symmetry and the presence of long-range order in the system. In such cases the
lowest-energy state does not have the same symmetry as the Hamiltonian of the system.
There are different types of symmetry that can be broken at a phase transition. For
example, in a ferromagnetic system rotational symmetry is broken because a spontaneous
magnetization occurs which defines a unique, but arbitrary, direction in space. Likewise,
in the superfluid state gauge symmetry is broken.

In a symmetry breaking transition a new macroscopic parameter, the so-called order
parameter appears in the state with the lower symmetry. This parameter measures the
loss of symmetry. The order parameter may be a scalar, a vector, a tensor, a complex
field or some other quantity. In any case the order parameter is zero in the symmetrical
state, and its non-zero values uniquely specify the broken state.

In general, the identification of the order parameter is guided by symmetry consid-
erations and by some physical intuition of the nature of the phase transition. In some
cases an order parameter may not exist (e.g. the Kosterlitz-Thouless transition in a 2-
dimensional classical spin system), or when an order parameter exists, it is not unique
since any power also satisfies the definition. Nevertheless, for the cases treated here, a
natural choice in terms of the thermodynamic average of some local operator will present
itself almost immediately.

We will adopt Landau’s definition that a phase transition is classed as being first-order
or second-order according to whether the order parameter is discontinuous or not. The
hallmark of a first-order transition is the existence of different phases of the transition
point. It follows that any transition carrying an abrupt structural change, like the solid-
liquid transitions, must be first order. By contrast, the difference between the phase
involved in a continuous transition disappears at the critical point and the symmetry
properties of the the phases must be closely related. In a continuous transition the phase
at lower temperature usually has the lower symmetry (but this need not to be true always).
The fact that second-order phase transitions have a connection with symmetry breaking
in the sense that the thermodynamic state of the system below the transition point does
not exhibit the full symmetry of the Hamiltonian, was recognized by Landau as early as
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1937.

3.1 Ferromagnetic system

As an example of a system with broken symmetry we consider the isotropic Heisenberg
ferromagnet. The Hamiltonian of this system is

Ĥ = −1
2

∑
α 6=β

JαβŜ
α · Ŝβ. (3.1)

It describes a system of interacting spins localized at the sites α, β of a rigid lattice, with
exchange interaction Jαβ > 0. The spin operators Ŝα at different sites commute and the
three spin components at each given site have the usual SO(3) commutation relations:[

Ŝαi , Ŝ
β
j

]
= iεijkŜ

α
k δαβ. (3.2)

The Hamiltonian is invariant under a rigid rotation of all spins since it only depends on
their relative orientation. The generator of these rotations is the total spin operator

Ŝ =
∑
α

Ŝα (3.3)

on account of the commutation relation

δkŜ
α
i = −i

[
Ŝk, Ŝ

α
i

]
= εkijŜ

α
j . (3.4)

The corresponding formula for a finite rotation of angle |θ| around the orientation axis
defined by θ is

Û (θ) ŜαU † (θ) = R (θ) Ŝα, (3.5)

where Û(θ) is the unitary operator

Û (θ) = e−iθ·Ŝ. (3.6)

Formula (3.5) states that the spin operators transform as vectors under rotations. Indeed
the 3× 3 orthogonal matrix R(θ) represents an element of the group SO(3) as given by

R (θ) = eiθ·L, (3.7)

where (
Li
)
jk

= −iεijk (3.8)

denotes the SO(3) generators in the vector representation.

Exercise 3.1

a. Check (3.4) by expanding formula (3.5)
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b. Demonstrate the rotational invariance of Ĥ by calculating

δkĤ = −i
[
Ŝk, Ĥ

]
= 0. (3.9)

Argue that this also shows the total spin to be a conserved quantity.

c. Verify that the generators (3.8) satisfy the SO(3) algebra.

Despite the rotational invariance of Ĥ, a ferromagnet has a spontaneous magnetic
moment in the ordered phase. That is, below the so-called Curie temperature one has

< Ŝz >= M0 6= 0, (3.10)

where M0 is the magnetization. This is the order parameter of the ferromagnetic phase:
its value is non-zero in the ordered phase and zero in the symmetric one. The fact that we
have chosen the spontaneous magnetization along the z-axis is of course entirely arbitrary.
Experimentally one applies a small external field to align the spins. When the field is
turned off again the magnetization stays oriented in the original field direction.

The occurrence of a spontaneous magnetization can easily be understood. Indeed,
the ground-state energy of the system is minimal if all inner products contributing to
the Hamiltonian (3.1) are positive with expectation value 1

2
× 1

2
= 1

4
. Thus the minimal

ground-state energy at T = 0 is

E0 =< 0↑|Ĥ|0↑ >= −1
4

∑
α 6=β

Jαβ (3.11)

for spins aligned in some arbitrary direction. In this state rotational symmetry is bro-
ken. However, the SO(3) symmetry is not broken entirely since rotations around the
magnetization axis are still symmetries of the ground-state. Therefore, in a ferromagnet
the original symmetry group is broken down to SO(2), which is isomorphic to the circle
group U(1). The broken symmetry corresponds to any rotation changing the direction of
the magnetization. These rotations are given by the coset R = SO(3)/U(1) = S2, i.e. the
set of rotations represented by the two sphere. (Note that this set is not a group.) The
consequences of such a symmetry breakdown will be further investigated below.

3.2 Effective Potential

It is obvious the the canonical density operator would yield a net magnetization zero,
since all degenerate orientations of the spins are weighted equally. The appearance of a
finite magnetization requires the state to transform non-trivially under rotations

ρ̂′ = Û †(θ)ρ̂Û (θ) 6= ρ̂. (3.12)

This is the manifestation of a broken symmetry below the critical temperature.
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Exercise 3.2.

a. Use (3.5) to show that the rotational invariance of the canonical ensemble implies
< Ŝ >c= 0.

b. Conversely, show that a finite magnetization implies the breakdown of rotational
invariance (3.12).

To lift the degeneracy of the different orientations in space, we may place the system
in a small external field in the z-direction. The interaction of the spins with the field in
the new Hamiltonian

Ĥ → Ĥ −BŜz (3.13)

breaks the invariance with respect to rotations, since the perturbation is invariant only
under the residual subgroup U(1). The corresponding partition function is

Z (β,B, V ) = Tr exp−β
(
Ĥ −BŜz

)
. (3.14)

This yields for the magnetization

M (B) =< Ŝz >B=
1

β

∂ logZ

∂B
. (3.15)

Now, we know that below the Curie temperature a zero-field magnetizationM0 remains
after the external field is turned off. This may be understood as follows. Because of the
symmetry-breaking term, the state with the magnetization along the B-axis, as compared
with the state with opposite magnetization, has a relative probability

P−
P+

= e−2βNSB, (3.16)

where S is the magnetization per spin and N the number of spins. In the thermodynamic
limit N → ∞, we have P− → 0 for any B. As B → 0 the system is in the state with
M = M0. Thus, the zero-field state depends upon the history by which it is prepared.
Also the crucial role of the thermodynamic limit is clear; if we keep N finite as B → 0,
we would get P+ = P− and both states would be equally populated. We conclude that a
non-vanishing magnetization density may be obtained by the following limiting procedure

m0 = lim
B→0

lim
V→∞

1

V
< Ŝz >B (3.17)

which is called a quasi-average by Bogoliubov. The order of the two limits is crucial and
cannot be interchanged.

It is useful to define a thermodynamic state function which depends on the magneti-
zation, i.e. the order parameter, rather than the magnetic field. This function is obtained
by defining the Legendre transform

Γ (β,M, V ) = Φ (β,B, V ) + βMB. (3.18)
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Here B = B(M) is a dependent variable that is obtained by inverting (3.15) to obtain the
field in terms of the magnetization. It follows that Γ which is called the effective potential
(or effective action), satisfies the reciprocity relation

∂Γ

∂M
= βB. (3.19)

The condition for symmetry breaking can now be formulated as the zero-field equation of
state

∂Γ

∂M
= 0. (3.20)

Without explicit reference to the thermodynamic limit, and the preparation of the sample,
the solutions of this equation represent all different configurations of the spontaneous
magnetization. Above the Curie temperature the stable solution is the one for which the
magnetization is zero. Below the transition temperature the stable solution is the one
with a non-vanishing magnetization.

Exercise 3.3

a. Write down the Legendre transform relation between the entropy of the system
and the effective potential Γ, and identify the primary independent thermodynamic
variables appropriate to both S and Γ by writing out their variation.

b. Give the definition of the Helmholtz potential Ψ = Ψ(T,M, V ) and show that the
variation is given by

δΨ = −SδT +BδM − PδV. (3.21)

c. Formulate the condition of symmetry breaking in terms of S and Ψ.

3.3 Bose-Einstein condensation

Let us now consider the model of an ideal Bose gas consisting of a number of N particles
in a volume V characterized by their momentum p and energy ε(p). According to chapter
2, exercise 2.6, this system is described by the Hamiltonian

Ĥ0 =
∑
p

ε (p) â†pâp, (3.22)

where the momentum-space occupation number operators satisfy the commutator relation
(3.31). The total number operator

N̂ =
∑
p

â†pâp (3.23)

is a conserved quantity, i.e. N̂ commutes with Ĥ.
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In thermal equilibrium at temperature T the average number of particles occupying
the quantum state p is given by the Bose-Einstein distribution function

< â†pâp′ >=
1

exp β (ε− µ)− 1
δpp′ , (3.24)

where µ is the chemical potential. We note that µ < 0, or else some of the occupation
numbers would be negative. For βµ very close to zero the occupation of the ground-state
ε,p = 0 can become macroscopic, that is, the ground-state density

n0 =
1

V
< â†0â0 >∼= −

1

V βµ
(3.25)

may contribute a finite fraction to the total particle density

n =
1

V
< N̂ >= n0 + λ−3G3/2 (βµ) . (3.26)

In the second term the sum over momenta has been replaced by an integral over the
energy by means of the substitution (2.42). In this term λ = (2π/mT )1/2 is the thermal
wavelength and G the Bose integral generally defined as

Gs (y) =
1

Γ (s)

∞∫
0

dx
xs−1

ex−y − 1
(3.27)

with Γ(s) the gamma function. In the limit y = 0 the Bose-integral becomes equal to the
Riemann ζ-function : Gs(0) = ζ (s).

The macroscopic occupation of the ground-state is called Bose-Einstein condensation.
It occurs for temperatures and densities such that

n0 = n− λ−3ζ (3/2) ≥ 0. (3.28)

The equality defines a critical temperature (as a function of density) or a critical density
(as a function of temperature). When the condensate density n0 is expressed in terms of
this critical temperature Tc, it is found to be a finite fraction of the total particle density

n0 = n

[
1−

(
T

Tc

)3/2
]
. (3.29)

The condensate density, representing the density of particles with zero momentum, seems
a natural choice for the order parameter in the case of Bose-Einstein condensation. How-
ever, a different definition will emerge when we analyze the relation with spontaneous
symmetry breaking.
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3.4 Broken Gauge Symmetry

Let us consider the expectation value of two field operators at two different spatial points.
Using the Fourier expansion formula (2.38) we get

< ψ̂† (x) ψ̂ (x′) >=
1

V

∑
p,p′ 6=0

ei(p+p′).v < â†pâp′ >

+
1

V
< â†0â0 >, (3.30)

where the ground-state contribution has been separated from the other terms with p,p′ 6=
0. For large values of the distance v = x − x′, the first term vanishes on account of the
Riemann-Lebesque theorem. However, the ”off-diagonal” elements of the expectation
value (3.30) remain finite under infinite separation in virtue of the second term:

lim
|v|→∞

< ψ̂† (x) ψ̂(x′) >= n0, (3.31)

where n0 is the condensate density.

Exercise 3.4

a. Show that for a translationally invariant system the expectation value (3.30) only
depends on the coordinate difference v = x− x′.

b. Argue that the ”diagonal” elements of expression (3.30) may be identified with the
particle density

n =< ψ̂†(x)ψ̂(x) > . (3.32)

On the other hand, since we do not expect the expectation value of the field at point
x to be influenced by a far away field at point x′, we may assume the clustering property

lim
|v|

< ψ̂† (x) ψ̂ (x′) >=< ψ̂† (x) >< ψ̂ (x′) > . (3.33)

In combination with formula (3.33) this implies that a Bose-condensed system is charac-
terized by off-diagonal long range order (ODLRO). It also implies that the expectation
value of a field operator may be different form zero:∣∣∣< ψ̂ >

∣∣∣2 = n0. (3.34)

This observation may be connected to the fact that the ground state of a Bose system is
not gauge invariant.

To see this quite explicitly we recall the commutator relation[
N̂ , ψ̂ (x)

]
= −ψ̂ (x) , (3.35)
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on account of which field operators acquire a phase factor under a gauge transformation:

e−iλN̂ ψ̂ (x) eiλN̂ = eiλψ̂ (x) . (3.36)

Taking the expectation value we have to conclude that a non-vanishing value of the order
parameter

η :=< ψ̂ >=
√
n0e

iφ (3.37)

with φ a macroscopic phase angle, does not comply with a gauge invariant state.
Bose-Einstein condensation is the manifestation of broken gauge symmetry. This

becomes particularly clear when we now discuss this phenomenon in analogy with the
ferromagnetic case. To that purpose we introduce the operator

η̂ =
1

V 1/2
â0 =

1

V

∫
d3xψ̂ (x) , (3.38)

which we couple to a fictitious symmetry breaking field ν in the Hamiltonian. The ther-
modynamic potential of the extended canonical ensemble

Φ = − log Tr exp−βĤ− ∝ N̂ − βV
(
νη̂† + ν∗η̂

)
(3.39)

can be calculated explicitly by diagonalizing the Hamiltonian. One finds

1

V
Φ (ν, ν∗) = β

|ν|2

µ
− Tλ−3G5/2 (βµ) , (3.40)

where the second term corresponds to the standard thermodynamic potential of the or-
dinary ideal Bose gas.

Exercise 3.5

a. Add a symmetry breaking term to the Hamiltonian according to

Ĥ → Ĥ + V
(
νη̂† + ν∗η̂

)
, (3.41)

Verify explicitly that this term breaks gauge symmetry.

b. Show that the new Hamiltonian can be diagonalized to the form

Ĥ − µN̂ =
∑
p

(ε− µ) b̂†pb̂p + V |ν|2 /µ (3.42)

by the substitution b̂p = âp − V 1/2(ν/µ)δp,0. Argue that this is a canonical trans-
formation of the momentum operators.

Like in the magnetic example, the order parameter is obtained by differentiation with
respect to the symmetry breaking ”field”:

< η̂ >=
1

βV

∂Φ

∂ν∗
=
ν

µ
= η. (3.43)
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By differentiation with respect to ∝= −βµ we recover (3.34) for the particle density:

n =
1

V

∂Φ

∂α
=
|ν|2

µ2
+ λ−3G3/2 (βµ) , (3.44)

where the first term is equal to the condensate density n0 = |n|2. It is obvious that the
condensate density vanishes in the limit |ν| → 0, except when µ is taken equal to zero at
the same time. As we have seen in the magnetic case, the effective potential controls the
values of the order parameter. In the present case we define this quantity as

Γ ≡ Φ− βV (νη∗ + ν∗η) (3.45)

satisfying the reciprocity relation

1

βV

∂Γ

∂η∗
= −ν. (3.46)

Substituting (3.40) and expressing the result in terms of the order parameter (3.43) we
get

1

V
Γ = α |η|2 − Tλ−3G5/2 (βµ) . (3.47)

As we already expected, the zero-field equation admits two solutions: either η = 0, α 6= 0,
or η 6= 0, α = 0. The last one describes the Bose condensed state.

Exercise 3.6

a. Rewrite the effective action in the form

Γ (η, η∗) = − log Tr exp−βĤ − αN̂ − βV (νδη̂† + ν∗δη̂). (3.48)

b. Show that the equation
Γ (η0, η

∗
0) = Φ (0, 0) (3.49)

holds for any solution η0 of the zero-field equation.

3.5 Ginzburg-Landau Theory

For a system with a realistic interaction between the particles, one cannot expect to be
able to explicitly calculate the effective potential, like formula (3.47) for the ideal Bose
gas. However, for the case of a second order transition the phenomenological approach
proposed by Ginzburg and Landau in 1950 provides an effective alternative. The starting
point is the general fact that in the less symmetric state a new macroscopic parameter η,
called the order parameter, appears. This order parameter may be a scalar, a vector (as
in ferromagnetic ordering), a complex number (as in Bose condensation), or some other
quantity.
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Figure 3.1: Effective potential

Let us assume, for simplicity’s sake, that η is a scalar. We can then represent the effec-
tive potential as a function of η and the other thermodynamic variables Γ = Γ(α, β, V ; η).
Here it is to be remembered that the value of η must be determined from the extremum
condition

∂Γ

∂η
= 0, (3.50)

whereas the other thermodynamic parameters may be specified arbitrarily. Thermody-
namic stability requires the extremum to be minimum for η = 0 above the critical tem-
perature Tc and η 6= 0 below Tc. Furthermore the effective potential must be a scalar
function of the order parameter.

The continuity of a second-order transition allows η to become arbitrarily small near
the transition point. It is reasonable therefore to assume that one may expand in powers
of η:

Γ = Γ0 + αIη + α2η
2 + α3η

3 + α4η
4 + .. (3.51)

The coefficients αi = αi(T ) are functions of T and the other thermodynamic parameters.
We will assume that the ground-state of the system is degenerate with respect to η → −η
(like in the two examples treated above). This implies that Γ cannot contain odd-order
terms : α1 = α3 = 0.

The form of α2(T ) is chosen in such a way that above Tc the effective potential can
only be minimum for η = 0. From the formulae

∂Γ

∂η
= η

(
2α2 + 4α4η

2
)

= 0, (3.52)

∂2Γ

∂η2
= 2α2 + 12α4η

2 > 0, (3.53)

we learn that we must require: α2 > 0, T > Tc. In the ordered phase, η 6= 0 must
correspond to the stable state. Thus a sketch of Γ will look like in figure 1.
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Figure 3.2: Behaviour of the heat capacity in the Ginzburg-Landau theory

We see that we must have α2 < 0, T < Tc, while α2(Tc) = 0. In order to have global
stability, even at the transition point where η = 0, the coefficient α4 must be positive.

The transition point is determined by the condition

α2(T ) = 0. (3.54)

If one assumes that this function is regular at Tc, it may be expanded as

α2(T ) = α(T − Tc) (3.55)

with α some constant. The coefficient α4(T ) may in first order be replaced by α4(Tc).
Putting this into equation (3.52), we obtain

T > Tc

{
η = 0
Γ = Γ0

, (3.56)

T < Tc

{
η2 = α (Tc − T ) /2α4

Γ = Γ0 − α2 (T − Tc)2 /2α4
(3.57)

Thus below Tc the order parameter increases as |T − Tc|
1
2 . Neglecting higher powers of η

we find for energy

E =
∂Γ

∂β
= E0 −

α2T 2 (Tc − T )

2α4

. (3.58)

At the transition point this expression is continuous as it should be. However, the heat
capacity is discontinuous

∆C =
α2T 2

c

2α4

. (3.59)

The jump has the shape of a greek lambda; it is therefore often called a λ-transition.
Near the transition point the minimum of Γ as a function of η becomes steadily flatter.

As a consequence there is an increased sensitivity of a second-order phase transition to
fluctuation effects for T → Tc.
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3.6 Goldstone Theorem

In the case of the Bose gas, we have seen that broken gauge symmetry entails the exis-
tence of long-range correlations below the critical temperature. In fact, this is a general
characteristic of phase transitions accompanied by spontaneous symmetry breaking. In a
system with only short-range forces, long-range order can only be understood if there is a
mechanism that mediates information over long distances. In modern condensed matter
physics this mechanism is pictured as the propagation of massless excitations through the
system, the so-called Goldstone bosons. The number of independent Goldstone modes
is the order of the remaining symmetry group of the system in the ordered phase (i.e.
the set of transformations that leave the effective potential invariant but not the order
parameter itself).

We will substantiate these statements by considering the general case of a set of
symmetry generators Q̂a, a = 1, 2 . . . , satisfying the commutation relations[

Q̂ab, Q̂b

]
= if cabQ̂c, (3.60)

where repeated indices are summed over their full range. The real coefficients fabc, which
are called structure constants, are antisymmetric in the indices a, b; there is no distinction
between upper and lower indices. The operators Q̂a are said to form a Lie-algebra. Given
a Lie-algebra, there exists a Lie-group having these operators as its generators. In the
two examples treated above the Lie-groups were the rotation group SO(3) and the gauge
group U(1).

Exercise 3.7

a. Give the structure constants for the groups SO(3) and U(1).

b. Let Ŷ = iαaQ̂a. Show that the generators transform linearly

e−Ŷ Q̂be
Ŷ =

(
eiαata

)
bc
Q̂c (3.61)

according to the adjoint representation defined by (ta)bc = −ifabc. Use the expansion
formula (2.51).

c. Write down the finite transformation formula corresponding to (3.35) in analogy
with (3.61). Compare with (3.5).

Symmetry breaking is introduced by imagining that we have a theory with a set of
operators

Âi =
1

V

∫
d3xâi (x) (3.62)

which transform according to some representation Ta of the given Lie-algebra:

δaÂi = −i
[
Q̂a, Âi

]
= i (Ta)ij Âj. (3.63)
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At this point we need te make a distinction between operators that commute with all
generators, and operators that do not. If all observables belong to the former class, this
gives rise to a superselection rule. In any case we will assume that the Hamiltonian in
such an observable, i.e. Ĥ is invariant

δaĤ = −i
[
Q̂a, Ĥ

]
=

d

dt
Q̂a = 0. (3.64)

This implies that the generators

Q̂a (t) =
∫
d3xq̂a (t,x) (3.65)

are conserved.
If now, below a critical temperature, the expectation value of equation (3.63) terns

out to be non-zero, at least for some of the indices, then the state breaks the symmetry
of at least one charge, i.e. [ρ̂, Q̂a] 6= 0, and at least one of the operators (3.62) develops a
non-vanishing expectation value

ηi =
1

V

∫
d3x < âi (x) >6= 0. (3.66)

This identifies this expectation value as an order parameter: ηi is zero in the symmetric
state and non-zero in the unsymmetrical one.

To obtain the Goldstone theorem we study the non-vanishing expectation value of
(3.63) for a translationally invariant system. Picking the appropriate index we consider∫

d3x < [q̂a (t,x) , âi (0)] >= − (Ta)ij ηj 6= 0. (3.67)

Note that in this case we can write ηi =< âi(x) >. The time is arbitrary since the charge
is conserved. Equation (3.67) is interesting because it implies that the so-called response
function

χ̃′′ (ω,k) = 1
2

∫
d4xeiωt−ik.x < [q̂a (x) , âi (0)] > (3.68)

has a delta-peak in the long wave length limit:

lim
k→0

χ̃′′ (ω,k) = −πδ (ω) (Ta)ij ηj. (3.69)

This result signals the existence of a collective mode whose energy ωa(k) goes to zero as
k→ 0, the so-called Goldstone mode. Such modes are identified by a peaked contribution
to the response function (3.68) which converges to (3.69) in the limit k → 0. This peak
could be a sharp excitation branch

χ̃′′ (ω, k) ∝ δ (ω − ωa (k)) (3.70)

with ωa(k) → 0 for k → 0. Or it could be a smooth peak with a width that narrows to
zero as k→ 0. In any case the number of these Goldstone modes is equal to the number
of broken generators.
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Goldstone bosons are not merely theoretical constructs since they can be detected
experimentally. For example, in the Heisenberg ferromagnet the Goldstone excitations
are known as magnons or spin waves with dispersion low ω ∼ |k|2 for k→ 0. The unusual
temperature dependence of the heat capacity in the ferromagnet, Cv ∝ T 3/2 for T → 0, is
due to these modes. In the free Bose gas the Goldstone excitations are the Bose particles
themselves. The dispersion law is the same as above.

In conclusion one can say that spontaneous symmetry breakdown gives rise to low
frequency Goldstone modes entailing long-range order. One condition is that no long-
range forces are present. Such forces can conspire to prevent the occurrence of Goldstone
modes. In particle theory this breakdown of the Goldstone theorem in gauge theories is
called the Higgs mechanism [3].
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Chapter 4

SUPERFLUIDITY AND
SUPERCONDUCTIVITY

Superconductivity in metals and superfluidity in neutral systems are manifestations of
intrinsically quantum mechanical collective behaviour. The general picture is based on the
phenomenon of Bose condensation. Namely, below a critical temperature a finite fraction
of all atoms begins to occupy a single quantum-mechanical state. This fraction increases
to unity as the temperature decreases to zero. The atoms in this state become locked
together in their motion and can no longer behave independently. Thus, for example,
if the liquid flows through a narrow capillary, the processes of scattering of individual
atoms by the walls are now totally ineffective, since all atoms must be scattered or none.
The quantum-mechanical nature of the behaviour has other consequences. For example,
if the liquid is placed in a doughnut-shaped container, the wave function must fit into
the container, that is, there must be an integral number of wavelengths as one goes once
around. Because of the fact that all condensed atoms are in the same state, the liquid
can rotate only at certain special angular velocities.

A similar general picture is believed to apply for superconducting metals, except that
the particles which undergo Bose condensation (and are therefore required to be bosons)
are not individual electrons, but rather pairs of electrons which form in the metal, the
so-called Cooper pairs. Something rather similar happens in 3He, where the basic entities
are also fermions. Here there is the further interesting feature that the fermion pairs
which undergo Bose condensation have a rich and variable internal structure, which by
the nature of the Bose condensation process must be the same for all pairs. This rich
structure is reflected in the occurrence of a number of different superfluid phases. It is
likely that the phenomenon of superfluidity also occurs in other systems of fermions, for
example in the interior of a neutron star, although there is no firm evidence as yet.

The principles of superfluidity and superconductivity are described in many textbooks
[8, 9, 10, 11]. Here we shall focus on those features which can be understood with little
detailed calculation and which are in close formal analogy with our discussion of broken
symmetry in the preceding chapter.
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Figure 4.1: Phase diagram of 4He

4.1 Liquid 4He

From a microscopic point of view liquid Helium is the simplest of all condensed substances.
Its atoms may be treated as structureless particles (except for the nuclear spin 1/2 carried
by 4He) interacting via an interatomic potential that is quite accurately known. The
common isotope is 4He consisting of atoms with zero total spin and obeying Bose statistics.
The atoms of the rare isotope 3He are fermions differing only by the addition of one
neutron in the nucleus. As far is known, at low pressure both isotopes remain liquid
down to absolute zero, where they solidify only under an applied pressure of ∼ 25 Bar
(4He) and ∼ 30 Bar (3He). Since a classical system will always crystallize at sufficiently
low temperature, liquid 3He and 4He are known as quantum liquids.

Under atmospheric pressure 4He liquifies at 4.2 K and 3He at 3.19 K. Immediately
below their respective boiling points both 4He and 3He behave as ordinary liquids with a
small viscosity. However at 2.17 K liquid 4He undergoes a transition to a different phase,
known conventionally as He II; see figure 1. This transition is signalled by a specific
heat anomaly, whose characteristic shape has led to the name λ-point being given to the
temperature at which it occurs.

The most spectacular property of He II is that it is superfluid. That is, it has been
found (Kapitza, 1938) to flow through narrow capillaries and porous media without ap-
parent friction. Being a fermionic system, liquid 3He does not share this λ-transition.
However, it has also found to have superfluid properties (Osheroff et al., 1972), albeit in
the milli-Kelvin temperature range. This second-order transition is believed to be sim-
ilar to the transition to the superconducting state in metals. We will leave a detailed
discussion of 3He for a later chapter.
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Figure 4.2: Specific heats of liquid 4He and an ideal Bose-Einstein gas

Experiments to measure the viscous resistance to flow and the viscous drag on a
body submerged in liquid 4He have revealed that He II is capable of being non-viscous
and viscous at the same time. This feature is explained by the two-fluid model first
introduced by Tisza (1938). According to this model He II behaves as if it were a mixture
of two liquids. One, the normal fluid, possesses an ordinary viscosity, and the other, the
superfluid, is capable of frictionless flow past obstacles. It must be understood, however,
that this is a purely phenomenological description, and that the fluid cannot in fact be
physically separated into a normal and superfluid component.

One defines a mass density for the normal and superfluid components, ρn and ρs,
respectively. The total mass density is the sum

ρ = ρn + ρs. (4.1)

Likewise, one defines a local velocity for each component and a total mass current density

j = ρnvn + ρsvs (4.2)

This approach works well when the relative velocity vn − vs is small. In a famous exper-
iment devised by Andronikashvili (1946) the variation of ρn/ρ with the temperature can
be measured. The ratio is unity at the λ-point. Below 1 K the liquid is almost entirely
superfluid. It is further assumed that the entropy of He II is confined to the normal
component: S = Sn, and that the normal component is responsible for the transport of
heat. The superfluid carries no entropy and at absolute zero He II is entirely superfluid
with zero entropy.

It is clear that the pure superfluid constitutes the ground state of He II. The analogy
with the phenomenon of Bose-Einstein condensation for an ideal gas suggests that the
superfluid fraction of He II may be identified with a Bose-Einstein condensate. This
condensate is characterized by a delta-type of singularity in momentum space, in which
a macroscopic fraction of the particles of the system is concentrated, and a condensate
order parameter η(x), also called condensate wave function, in coordinate space.
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4.2 Superconductors

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes in Leiden. What
he observed was that the electrical resistance of various metals such as mercury, lead,
and tin abruptly drops to zero in a small temperature interval at a critical temperature
Tc, characteristic of the metal. Once set up, such currents have been observed to flow
without measurable decrease for a year, and a lower bound of some 105 years for their
characteristic decay time has been established. It is believed that the superconducting
state is really a state of zero resistance. Thus, perfect conductivity is the first traditional
hallmark of superconductivity.

The true nature of the superconducting state exhibits itself more clearly in the property
of perfect diamagnetism discovered in 1933 by Meissner and Ochsenfeld. They found not
only that a magnetic field is excluded from a superconductor, as might appear explained by
perfect conductivity, but also that the field is expelled from an originally normal sample.
This means that the state with the flux excluded is a true thermodynamic equilibrium
state. Superconductivity is destroyed by a critical field Hc which is related to the free-
energy difference between normal and superconducting states in zero field, the so-called
condensation energy of the superconducting state:

1
2
H2
c (T ) = fn(T )− fs(T ). (4.3)

Note that this condensation energy per unit volume is negative. The variation of Hc with
temperature is described to within a few percent for all materials by

Hc (T ) = Hc

[
1−

(
T

Tc

)2
]
. (4.4)

The valueHc of the critical field at zero temperature is typically some hundred Oersted.
While the transition in a zero field at Tc is a virtually perfect second-order phase transition,
the transition in the presence of a field is of first order, there being a discontinuous change
in the thermodynamic state of the system and an associated latent heat.

In some metals (e.g. pure V and Nb) and most superconducting alloys the transition to
the normal phase in a magnetic field is not immediate, but first the field penetrates through
localized flux tubes parallel to the field. The core of these tubes is in the normal state.
Outside these so-called vortices the system is still superconducting. The normal state is
only restored completely until the upper critical field Hc2 is reached. Superconductors
with this behaviour are known as type-II.

The measurement of the electronic specific heat of superconductors by Corak et.al.(1954)
showed that the heat capacity well below Tc was dominated by an exponential dependence

Cv = aγTc exp−bTc/T, (4.5)

where γT is the normal-state electronic heat capacity, and a ≈ 10, b ≈ 1, 5 numerical
constants. Such an exponential dependence implies a minimum excitation energy per
particle of ∆0 ∼ 1, 5Tc. This is one of the key predictions of the BCS theory set out in a
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Figure 4.3: Flux tube in a type-II superconductor

fundamental paper by Bardeen, Cooper, and Schrieffer in 1957. The essential qualitative
feature of the BCS-theory is that superconductivity results from an attractive interaction
between electrons mediated by phonons (lattice vibrations). The effect of the interaction
on two electrons is to bind them into an entity, called a Cooper pair, occupying states
with equal and opposite momenta and spin. These Cooper pairs have a spatial extension
ξ0 = avF/Tc, called the coherence length, where vF is the Fermi velocity and a a numerical
constant of order unity. The opposite spin means that the electrons are in a spin singlet
(↑↓) state, and the pairing in superconductors is called s-wave.

The BCS state is made up of Cooper pairs which, roughly speaking comprise the
superconducting charge carriers. This arrangement requires that some electron states
just outside the normal Fermi surface are occupied, and some just inside are empty. The
total energy of the BCS state is lower than that of the normal state, because the binding
energy of the Cooper pair outweighs the increase in kinetic energy. The effect is that the
particle energy

εp =

√√√√∆2 +

(
p2

2m
− µ

)2

(4.6)

cannot be less that the ”gap” value ∆ which is reached when p = pF . In other words,
the excited states of the system are separated from the ground state by an energy gap
∆. This ∆(T ) was predicted to increase from zero at Tc to a limiting value such that
∆0 = ∆(T = 0) = 1.76Tc, for T << Tc. The quantity 2∆ may be regarded as the binding
energy of the Cooper pair which would have to be expended to break it up.

��
��
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'$

∆

Figure 4.4: Gap around the Fermi sphere

It must be noted, however, although a typical feature of superconductivity, the ex-
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istence of an energy gap is by no means necessary. This is shown in the occurrence of
”gapless” superconductors with zero d.c. resistance.

Much of the physics of superconductivity can be understood on the basis of the ex-
istence of an order parameter η(x) which has amplitude and phase, like for He II, and
which maintains phase coherence over macroscopic distances. The condensate is analo-
gous to, but not identical with, the familiar Bose-Einstein condensate, with Cooper pairs
of electrons replacing the single bosons which condense in superfluid Helium.

4.3 Bose Fluid

Above we have established the idea that liquid 4He below the λ-point possesses a con-
densate, that is, a macroscopically large number of particles occupying a single quantum
state. We have also indicated that the superfluid properties reflect the macroscopic co-
herence of this state. In the following we give these ideas more substance by considering
an interacting boson fluid as a model for 4He. The particles in the system are described
by operator fields that satisfy the canonical commutation relations[

ψ̂ (x) , ψ̂† (x′)
]

= δ (x− x′) , (4.7)

[
ψ̂ (x) , ψ̂ (x′)

]
=
[
ψ̂† (x) , ψ̂† (x′)

]
= 0, (4.8)

which characterize a system of bosons.
We assume that at the λ-transition gauge symmetry, generated by the number operator

N̂ =
∫
d3xψ̂†(x)ψ̂(x), (4.9)

is broken. Thus, the condensed phase is characterized by a complex non-zero order pa-
rameter

µ =< ψ̂ (x) >=
√
nsε

iφ (4.10)

with a definite but arbitrary phase. The square modulus ns = |η|2 may be interpreted
as the condensate density. The degenerate phase reflects the gauge symmetry in parallel
with the ferromagnetic example, for which the magnitude of the magnetization is fixed
but the orientation is arbitrary.

Exercise 4.1

a. Review the essentials of symmetry breaking. Follow the discussion in chapter 3.6
and specialize to the present case.

b. Identify the order parameter and the corresponding operator.

c. Argue that there is a Goldstone mode associated with the degenerate phase angle.
Hint: discuss the operators

(
ψ̂ + ψ̂†

)
and i

(
ψ̂ − ψ̂†

)
separately.
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The phase must be coherent over the whole system. The effect is to lock the condensate
particles in a state of uniform motion. However, we will allow the phase to be slowly
varying on a macroscopic scale as a function of position: φ = φ(x). We may then define
the quantity

gs = η∗
(
↔
∇ /2i

)
η = ns∇φ (4.11)

in analogy with the mass current in Schrödinger wave mechanics. The identification of
this quantity with the superfluid mass current (or momentum) density

gs = ρsvs (4.12)

makes the superfluid velocity proportional to the gradient of the phase of the order pa-
rameter

vs =
1

m
∇φ. (4.13)

The proportionality constant m = ρs/ns is the mass of the particles.
Broken gauge symmetry has already been discussed in some detail in the preceding

chapter. Following the same line of reasoning, we construct the ensemble that lifts the
degeneracy of the normal state by coupling the operator associated with the order param-
eter to an external source. In the present case the extended ensemble takes the canonical
form

Φ = − log Tr exp−Φ̂, (4.14)

but with the canonical exponent given by

Φ̂ = βĤ + αN̂ +
∫
d3x

[
ν∗ (x) ψ̂ (x) + ν (x) ψ̂† (x)

]
. (4.15)

The sources play the role of Lagrange multipliers which must be chosen such that func-
tional differentiation

δΦ

δν∗ (x)
=< ψ̂ (x) > (4.16)

reproduces the actual value of the order parameter (4.10). As compared to the example
of the ideal Bose gas, treated in section 3.4, we have generalized to a local formulation,
in order to accommodate a spatial dependence of the order parameter. A trivial further
difference is that we have absorbed a factor β in the external source field.

For (4.14), (4.15) to be acceptable as an equilibrium ensemble, it must have the prop-
erty that expectation values of local operators â (x) are space independent:

< [P, â (x)] >= 0. (4.17)

Here P̂ is the momentum operator of the system; see (2.3.8). This seems to present a
problem because the above ensemble breaks translational invariance if the sources are
not constant in space. However, for local gauge invariant operators, which constitute the
observables of the system, it is obvious that we may rewrite (4.17) as

<
[
P̂− pN̂ , â (x)

]
>= 0, (4.18)
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for arbitrary values of the parameter p.
The physical meaning of the momentum p will become clear shortly. To that order

we consider the equivalent condition[
P̂− pN̂ , Φ̂

]
= 0. (4.19)

By construction the number operator does not commute with Φ̂, as given in (4.15), and
we find that the sources must satisfy the spatial homogeneity condition

(i∇+ p) ν (x) = 0. (4.20)

Writing ν = |ν| eiλ, where |ν| is a constant, we obtain the solution

λ (x) = x · p + λ (0) . (4.21)

The last term is an arbitrary constant. Without loss of generality it can be taken to
be zero, because a constant phase can always be absorbed in the definition of the field
operators.

We will now show that the phase of the external source (4.21) is equal to the phase of
the order parameter. We start from the equation

<
[
P̂− pN̂ , ψ̂ (x)

]
>= 0 (4.22)

which is a direct consequence of condition (4.19). The known effect of the operators on
ψ̂ gives us the equation

(i∇+ p) η (x) = 0, (4.23)

which is identical to (4.20). Hence we conclude, that apart from a trivial constant, the
phases λ(x) and φ(x) are equal, and we shall make no distinction between them in the
following. We also obtain from (4.21)

gs = pns. (4.24)

This equation means that the condensate state has momentum p. In other words, a
macroscopically large fraction of the particles is in the state of momentum p. The super-
fluid current is thus equated with the motion of the condensate.

Exercise 4.2

a. Derive equation (4.20) by explicit calculation of
[
N̂ , Φ̂

]
and

[
P̂, Φ̂

]
.

b. Demonstrate that (4.22) implies that < âp′ >6= 0 if and only if p′ = p.

c. Make use of the result (4.21) to show the equilibrium condition essentially reduces
the ensemble (4.15) to the form (5.12) of the preceding chapter.
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4.4 Thermodynamics

It is convenient to reexpress the ensemble in a reference frame where the superfluid velocity
is zero. We do this by introducing the unitary operator

Ûφ = exp−i
∫
d3xφ (x) n̂ (x) , (4.25)

where
n̂ (x) = ψ̂† (x) ψ̂ (x) (4.26)

is the local number density operator. On account of the commutation relations (4.7),
(4.8) the operator (4.25) induces a local gauge transformation on the fields:

Ûφψ̂ (x) Û †φ = eiφ(x)ψ̂ (x) . (4.27)

We make use of this gauge transformation to eliminate the phase from the linear gauge
breaking term in the canonical operator (4.15):

Φ̂′ = ÛφΦ̂Û †φ = βĤ ′ + αN̂ + |ν|
∫
d3x

[
ψ̂ (x) + ψ̂† (x)

]
. (4.28)

However, the phase has not entirely disappeared, since we find it back in the transformed
Hamiltonian

Ĥ ′ =
∫
d3x

[
ê+ ĵ · ∇φ+

1

2m
η̂ (∇φ)2

]
, (4.29)

where ê(x) is the local energy density operator and

ĵ (x) =
1

m
ψ̂† (x)

(
↔
∇ /2i

)
ϕ̂ (x) (4.30)

the current density operator. In deriving formula (4.29) we have used the expansion
formula (2.51) and the commutator relations (2.23) and (2.25). We observe that the new
Hamiltonian is not a function of the phase itself, but of its gradient, which by definition
is the momentum of the particles in the superfluid state: ∇φ = p = mvs.

Exercise 4.3

a. Check that the transformation removes the phase of the order parameter< ψ̂ (x) >′=√
ns. The prime indicates that the expectation value has to be taken with respect

to the ensemble with canonical operator (4.28).

b. Argue that the thermodynamic potential (4.14) is invariant: Φ′ = Φ.

c. Verify the results
n̂′ (x) = n̂ (x) , (4.31)

ĵ′ (x) = ĵ (x) + vsn̂ (x) , (4.32)

by applying the transformation (4.25) to the particle density (4.26) and the current
density (4.30).
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Since the superfluid velocity is constant, we may also write (4.29) as

Ĥ ′ = Ĥ + vs · P̂ + 1
2
mv2

sN̂ . (4.33)

Here N̂ is the total number operator (4.8) and P̂ the total momentum operator (2.34).
In fact, what we have derived here is the transformation law of the Hamiltonian under a
Galilean transformation to a reference frame moving with velocity v = vs with respect to
the laboratory frame. The corresponding unitary operator is

Ûv = e−iv·Ĝ (4.34)

with boost generator

Ĝ = m
∫
d3xx n̂ (x) . (4.35)

One may verify that this definition is consistent with the basic algebra[
Ĝi, Ĥ

]
= iP̂i (4.36)

[
Ĝi, P̂j

]
= iMδij (4.37)

of the Galilean group. The constant M is the total mass of the system.

Exercise 4.4

a. Derive the commutator algebra for the Galilean group using the commutation rela-
tions given in chapter 2.

b. Check the transformation formula (4.33).

c. Consider the three quantities < ĵ′ >′, < ĵ′ > and < ĵ >′ involving the current density
operator (4.30). Which of these represents the current density in the moving frame?

The effect of the Galilean transformation is to introduce the overall translational
motion and kinetic energy in the Hamiltonian (4.33), and thereby in the canonical operator
(4.28). The thermodynamic potential, which is an invariant, is seen to be a scalar function
of the thermodynamic parameters α, β, the superfluid momentum p, and the volume V:
Φ = Φ(α, β,p2, V ). Differentiation yields

1

V

∂Φ

∂α
=< n̂ >′= n, (4.38)

1

V

∂Φ

∂β
=< ê′ >′= e, (4.39)

1

V

∂Φ

∂p
= β < ĵ′ >′= βj. (4.40)
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Here use has been made of the results (4.31) and (4.32). Recalling the connection
βP = - Φ/V, we obtain the fundamental thermodynamic relation

δ (βP ) = −nδα− eδβ − βj · δp (4.41)

which represents the second law of thermodynamics for a superfluid.

Exercise 5.5

a. Argue that the current density j is proportional to vs.

b. Derive the Gibbs relation Tδs = δe− µδn− vs · δgs for a superfluid.

4.5 Cooper Pairing

Many metals are able to conduct an electric current without any resistance when they are
cooled below a characteristic temperature. The transition from the normal state to the
superconducting state is a phase transition of second order, characterized by the fact that
the heat capacity of the metal has a discontinuity at the transition temperature. Again
this is explained to be a consequen of the broken U(1) gauge symmetry of the Hamiltonian.
However, electrons are not bosons but fermions described by field operators ψ̂σ (x), with
spin state up (σ =↑) or down (σ =↓), satisfying the anti-commutation relations[

ψ̂σ (x) , ψ̂†σ′ (x′)
]

+
= δσσ′δ (x− x′) , (4.42)

[
ψ̂σ (x) , ψ̂σ′ (x′)

]
+

=
[
ψ̂†σ (x) , ψ̂†σ′ (x′)

]
+

= 0. (4.43)

In terms of these fields the electron charge density and corresponding current density are
given by

q̂ (x) = e
∑
σ

ψ̂†σ (x) ψ̂σ (x) , (4.44)

ĵ (x) = − e

2m

∑
σ

[
iψ†σ (x)∇ψ̂σ (x) + h.c.

]
, (4.45)

where e and m are the electron charge and mass, respectively. Charge and current density
ĵµ = (q̂, ĵ) satisfy the continuity equation

∂µĵ
i (x) = 0, (4.46)

which comprises the conservation of charge

Q̂ =
∫
d3x q̂ (x) (4.47)

in local form.
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The Pauli principle as expressed by

ψ̂σ (x) ψ̂σ (x) = 0, (4.48)

forbids more than one electron from condensing into the same quantum state. There-
fore, Bose-Einstein condensation of electrons is not physically possible. However, if the
electrons were to form pairs, i.e. composite entities having boson properties, there is no
contradiction in assuming that these pairs may accumulate in the same macroscopic state.
It was shown in 1956 by Cooper that the effective attraction between electrons near the
Fermi surface, due to electron-phonon interaction, must lead to bound states of electrons,
regardless of how weak the attraction may be. With this idea as a starting point, it has
been possible to construct a successful theory of superconductivity (Bardeen, Cooper,
Schrieffer, 1957). In this theory a superconductor is characterized by a non-vanishing
value of the electron-pair amplitude

Fσσ′ (x− x′) =< ψ̂σ (x) ψ̂σ′ (x′) >6= 0. (4.49)

In the homogeneous problem (i.e. in the absence of an external field), the expectation
value depends only on the coordinate difference. Note that like in the Bose fluid, the state
cannot be gauge invariant.

Two particles with spin 1/2 can pair in a singlet state with total spin S = 0, or in a
triplet state with total spin S = 1 and spin projections Sz = 0,±1. If we assume spherical
symmetry, the electrons can only form pairs with opposite spins. In this case of so-called
s-wave pairing, we need only consider

F (|x− x′|) =< ψ̂↑ (x) ψ̂↓ (x′) > . (4.50)

This function describing the correlation between two electrons has a spatial range ξ0,
called the coherence length, and falls of rapidly beyond. By relating this length to the
smallest size wave packet the electrons can form, one arrives at the estimate

ξ0 = a
vF
Tc
, (4.51)

where vF = pF/m is the Fermi velocity and where a is a numerical constant for which the
BCS-theory gives the value a = 0.18. For real superconductors the order of magnitude of
ξ0 is 10−4 cm, much larger that the interparticle distance.

To within a constant factor the function F (v), v = |x− x′|, may be regarded as the
wave function of a bound pair of particles relative to its centre of mass. The normalization∫

d3v |F (v)|2 = nc, (4.52)

therefore has an interpretation as the density of pairs. Obviously the quantity |F (0)|2ξ3
0

is of the same order of magnitude. This suggests that we define the order parameter for
a superconducting system according to

η =

√
nc

|F (0)|
< ψ̂↑ (x) ψ̂↓ (x) > (4.53)
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as the local product of two electron operators with opposite spins. This order param-
eter characterizes the simplest (BCS) type of superconductor with s-wave pairing. By
definition the normalization |η|2 = nc is the density of the Cooper pairs.

The order parameter (4.53) is a complex number with many formal properties in
common with the order parameter describing a Bose fluid. A spatial dependence may be
introduced by writing

η (x) = |η| e2ieφ(x). (4.54)

What we assume here is that all quantities vary only slightly over distances of order ξ0.
This is called the London limit.

The phase is written in the particular form 2eφ(x) because of the transformation
properties of the order parameter under gauge transformations (see exc. 6). As we
have seen, a space dependent phase gives rise to a supercurrent, which in the case of a
superconductor, is an electric current. On account of the Maxwell equations such a current
is coupled to a magnetic field. Hence, superconductivity cannot be discussed without
taking electromagnetism into account. This will be the subject of the next section.

Exercise 4.6

a. Show the order parameter to transform according to

η → ηe2ieφ (4.55)

under a gauge transformation generated by the charge (4.47).

b. Verify that the ”covariant derivative”

Dη = (∇− 2ieA) η (4.56)

transforms in the same manner as η provided the field A is shifted according to the
rule A→ A +∇φ.

4.6 London equations

The electrodynamic properties of superconductors give the superfluidity of electrons in
metals its unique interest. To investigate these properties we shall assume that an external
field is coupled to the electrons. We choose a gauge in which the scalar potential vanishes.
The vector potential A then gives the electric and magnetic fields according to

E = −∂tA, (4.57)

B = ∇∧A. (4.58)

In analogy with the superfluid mass current (4.11) we define the electric supercurrent for
a particle of mass 2m and charge 2e as

Js =
e

m
η∗
(
↔
∇ /2i

)
η =

(2e)2

2m
|n|2∇φ. (4.59)
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As is well known, the coupling to an electromagnetic field arises from the requirement of
local gauge invariance. This amounts to the replacement of the ordinary derivatives by
the appropriate covariant derivative (see exc. 6). Performing this replacement in (4.59)
we obtain

Js =
2e2

m
|η|2 (∇φ−A) , (4.60)

Thus a constant vector potential, which is not accompanied by an electric field, will
nevertheless induce a finite current. Conversely, if no electric field is applied, a constant
current is maintained: ∂tJ = 0. This is superconductivity.

The phase of the order parameter may be eliminated by changing the gauge of the
vector potential. Then equation (4.60) reads

Js = −m2
AA, (4.61)

which is known as London’s equation.The gauge of A is specified by requiring ∇ ·A = 0
so that the law of charge conservation ∇ · Js = 0 is satisfied. The proportionality factor

m2
A =

2e2

m
|η|2 = 2ω2

p

nc
n
, (4.62)

where ω2
p = en2/m is the square of the ordinary electronic plasma frequency, has the

dimension of a mass squared. Obviously it vanishes at the critical temperature. The
occurrence of this mass may be seen as an instance of the Higgs mechanism: in a system
with a broken symmetry a gauge boson, i.e. the photon in the case of electromagnetism,
becomes massive.

In static situations the photon mass effective reduces the range of the electromagnetic
interaction, i.e. its inverse λL = m−1

A acts as a screening length. The result is that a
magnetic field is exponentially screened from the interior of a superconductor, i.e. the
Meissner effect. This phenomenon of perfect diamagnetism was discovered by Meissner
and Ochsenfeld in 1933. The London equation (4.60) provides the explanation. Indeed,
taking the curl of this equation

B + λ2
L∇∧ Js = 0, (4.63)

and combining this with the curl of the Maxwell equation

∇∧H = ∇∧B− Js = 0, (4.64)

we obtain after eliminating the current:

λ2
L∇2B = B. (4.65)

The length λL is called the screening length or London penetration length. For a large
enough sample the flux density decays from its external value to zero in the penetration
region which is typically of the order 10−5 cm.
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Exercise 4.7

a. Assume that a superconductor with a plane surface occupies the half-space y > 0 and
is situated in a constant magnetic field H directed parallel to the z-axis. Determine
the magnetic field B.

b. Determine the supercurrent Js.

c. Explain the mechanism by which the flux is expelled.

The penetration depth of any superconducting material increases rapidly with tem-
perature from some value λL(0) at T = 0 to infinity as T → Tc. Hence, there will always
be a temperature interval in the neighbourhood of Tc where λL(T ) > ξ0. This is where
the London approximation is valid. However, many of the known superconductors violate
the condition for a pure London superconductor over almost the entire temperature range
up to Tc. One then has to consider the non-local description as proposed by Pippard
(1953). Unfortunately calculations become much more difficult in this case and we shall
not discuss this any further.

Finally, we consider flux quantization. This is a striking conservation law implied by
the generalized London equation (4.60). Integrating this equation around a closed path
C lying wholly in the superconductor, we obtain∮

c

dr ·
(
A + λ2

LJs
)

=
∮
c

dr · ∇φ. (4.66)

The first term on the left may be rewritten with the help of Stokes’ theorem. If the order
parameter is assumed to be single valued, the intergral on the right must be a multiple n
of 2π/2e:

Φ =
∮
c

ds ·B+λ2L

∮
c

dr · Js = ±n
π

e
. (4.67)

The left-hand side is London’s fluxoid Φ which differs from the magnetic flux by an
additional contribution arising from the induced supercurrent. The equation shows that
φ is quantized in units of ϕ0 = π/e = 2.07× 10−7 gauss cm2.

Exercise 4.8

a. Use the homogeneous Maxwell equation

∂tB +∇∧ E = 0 (4.68)

to show that Φ remains constant for all time.

b. Derive the London equations

E =
∂

∂t
λ2
LJs, (4.69)

B = −∇ ∧ λ2
LJs. (4.70)
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c. Conclude that Φ vanishes if the interior of C is wholly superconducting.

d. As a corollary of the previous conclusion, argue that Φ is the same for any path C ′

that can be deformed continuously into C.

If the sample of superconducting material is not simply connected, the integer n will be
unequal to zero in general. Nonzero values of n, which is called a topological charge, also
occur in type-II superconductors. The magnetic field then partially penetrates the sample
in the form of thin filaments of flux. Each flux tube contains one single unit of flux ϕ0.
Within each filament the flux is high, and the material is not superconducting. Outside
the core of the so-called Abrikosov vortex tubes the material is still superconducting
and the field decays as described above. Circulating around each filament is a vortex of
screening current.
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Chapter 5

BCS THEORY

As understood today, superconductivity is explained by a spontaneous break down of
electromagnetic gauge invariance. All important qualitative features, like the fact that
electrical resistance is so low that currents can circulate for years, can be understood as
exact consequences of this breakdown. However, to give a physical basis to the mechanism
of symmetry breakdown, and as a starting point for approximate quantitative calculations,
one needs a model. In this chapter we will study the microscopic model introduced by
Bardeen, Cooper and Schrieffer (BCS) in 1957. This model has been highly successful
in correlating and explaining the properties of simple superconductors in terms of a few
experimental parameters.

In the BCS-model electrons appear explicitly, but it is assumed in advance that only
electrons near the Fermi surface have an interaction, which is supposedly weak and at-
tractive in nature. This effective electron-electron interaction arises from the exchange of
phonons associated with the crystal lattice. The effects of this interaction on a normal
solid are remarkably small and are described by simple replacing non-interacting particles
by quasi-particles with slightly modified properties.

However, the introduction of an attractive interaction, no matter how weak, also leads
to a bound state consisting of a pair of electrons at the Fermi surface with equal but
opposite, momenta and spins. Once a macroscopic number of such Cooper pairs with a
lower net energy appears, a description of the system in terms of single-particle states does
no longer correspond to the state of lowest energy, and a transition to a new equilibrium
state must take place. This qualitative different state cannot be obtained by a perturbative
scheme which develops continuously from the original single particle states, and one has
to include the possibility of pairing from the beginning.

5.1 Reference State

The BCS-theory starts from the following model Hamiltonian for an electron gas

Ĥ =
∑
σ

∫
d3x

[
ψ̂†σ (x)

(
−∇

2

2m

)
ψ̂σ (x)− 1

2
λψ̂†σ (x) ψ̂†−σ (x) ψ̂−σ (x) ψ̂σ (x)

]
(5.1)
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The electron field operators satisfy the standard anti-commutation relations. As shown
by Cooper, the exchange of phonons leads to an effective attraction between electrons
close to the Fermi surface. In the Hamiltonian (5.1) this interparticle potential has been
approximated by an attractive delta-function-like potential with coupling constant λ > 0.

Before going on, it is important to emphasize that the BCS-theory serves as a model
rather than as a valid microscopic theory. For example, what is missing is the repulsive
Coulomb interaction between the electrons. The total interaction, which is the balance
of the phonon-electron attraction and the Coulomb repulsion, may be either attractive or
repulsive. In its general form, the problem of taking both interactions into account for
actual models is very complicated, especially since real superconductors are anisotropic.

Exercise 5.1

a. Show that the interaction term of the BCS Hamiltonian (5.1) can be written in the
quadratic form

V̂ = U
∑
σ

∫
d3xn̂σ (x) n̂−σ (x) , (5.2)

where n̂σ = ψ̂†σψ̂σ (no summation).

b. For U > 0 this is known as the Hubbard interaction term. What is the sign of U in
the present case?

c. Show that an equivalent representation is

V̂ = −λ
∫
d3xη̂† (x) η̂ (x) . (5.3)

Identify the operators η̂ and η̂†.

The main reason why the BCS-model works is that it allows for the possibility for two
electrons of opposite spins to form a self-bound Cooper pair. This results in the breaking
of U(1) gauge invariance and a non-zero value of the pair amplitude. In the BCS-theory
it is customary to define the order parameter according to

∆ (x) = λ < ψ̂↓ (x) ψ̂↑ (x) >= −λ < ψ̂↑ (x) ψ̂↓ (x) >, (5.4)

which is called the gap function and plays the role of an anomalous self-energy as we will
explain in the sequel.

Let us now introduce the reference density operator to describe the superconducting
state as

ρ̂ = exp
(
Φref − βK̂ref

)
, (5.5)

Φref = − log
(
Tr exp−βK̂ref

)
, (5.6)

where the canonical operator is given by

K̂ref =
∫
d3x

[
ψ̂†σ

(
−∇

2

2m
− µ

)
ψ̂σ − νψ̂†↑ψ̂

†
↓ − ν∗ψ̂↓ψ̂↑

]
, (5.7)
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with ν(x) a function to be determined. As we have discussed before such an ensemble
explicitly breaks gauge invariance. No interaction other than the one with the source
field ν(x) has been included. This approximation is based on the assumption that such
terms would be the same in both normal and superconducting phases and do not affect
the comparison between the two states.

To determine ν(x) we recall the Gibbs-inequality (1.21). Substituting (5.1) and (5.5)
with (5.7) we obtain

Φ [ν, ν∗]− Φeq ≥ 0, (5.8)

where Φeq is the ordinary equilibrium thermodynamic potential and

Φ [ν, ν∗] = Φref − β < K̂ − Ĥ + µN̂ >ref (5.9)

a functional of ν and ν∗ corresponding to the thermodynamic potential of the reference
state. Taking the definition of the gap function (1.4) into account, this expression may
be rearranged in the form

Φ [ν, ν∗] = Φref −
β

λ

∫
d3x

[
ν∆∗ + ν∗∆− |∆|2

− <
(
λψ̂†↑ψ̂

†
↑ −∆∗

) (
λψ̂↑ψ̂↑ −∆

)
>ref

]
(5.10)

The last term is negative definite and describes fluctuations of the order parameter. Be-
cause of the large number of particles involved, the fluctuations about the expectation
value should be very small. In the BCS-theory these fluctuations are ignored. This mean
field approximation breaks down only in a small region very close to the critical temper-
ature, the so-called Ginzburg region, due to critical fluctuations.

Exercise 5.2

Let Φ[Â] = − log Tr exp−β̂Â be the thermodynamic potential corresponding to the
canonical operator Â. Then show that the Gibbs inequality can be rewritten in the
form of the Bogoliubov-Peierls inequality

Φ[Â+ B̂] ≤ Φ[Â]+ < B̂ >Â (5.11)

valid for arbitrary Hermitian operators Â and B̂.

For the remainder we use the much simpler expression obtained from (5.10) by removing
the last term representing the fluctuations. The scheme is now to find a best single-
particle ensemble by minimizing this expression, regarding ν(x) as a trial function that
has to be optimized. The functional differentiation of the first term at the right-hand side
of (5.10) gives

δΦeff

δν∗
= −β < ψ̂↓ψ̂↑ >ref , (5.12)

where the right-hand side is essentially the gap function as a functional of ν(x). For the
variation of the potential (5.10), minus the fluctuations, we thus find

δΦ =
β

λ

∫
d3x (ν −∆)δ∆∗ + c.c, (5.13)
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which shows that Φ may be regarded as a functional of ∆ and ∆∗. The minimum is
reached for ν = ∆. This introduces selfconsistency into the theory because ∆ now both
determines and is determined by equation (5.12):

λ

β

δΦref

δ∆∗ (x)
= −∆ (x) . (5.14)

In this way we obtain the following minimized expression for the thermodynamic potential
of the reference state:

Φ
[
∆̄, ∆̄∗

]
= Φref −

β

λ

∫
d3x

∣∣∣∆̄ (x)
∣∣∣2 , (5.15)

where ∆̄(x) is a solution of the self-consistent gap-equation (5.14). From the Gibbs
inequality (5.8) we know that this thermodynamic potential is always larger or equal to
the true equilibrium thermodynamic potential. In fact, under fairly general conditions it
can be shown that they are equal. This is the content of a theorem due to Bogoliubov jr
(1966) which states that in the thermodynamic limit the minimum of the difference (5.8)
converges to zero. The main step in the proof, which is too lengthy to reproduce here, is
to derive an upper bound on the fluctuations. In a later section we will discuss a different
approach which will make the mean-field character of the BCS-theory and the role of the
fluctuations much more transparent.

5.2 Gap equation

For convenience we introduce the Nambu 2 × 2 matrix notation for the fields

ψ† =
(
ψ̂†↑, ψ̂↓

)
, ψ̂ =

(
ψ̂↑

ψ̂†
↓

)
(5.16)

The anticommutation relation they satisfy is[
ψ̂ (x) , ψ̂† (x′)

]
= 1δ (x− x′) . (5.17)

With the help of this notation we can rewrite the reference canonical operator as

K̂ref =
∫
d3xψ̂†(x)Eψ̂ (x) , (5.18)

where E is the 2× 2 matrix operator

E =
(
ε (p)− µ −∆
−∆∗ −ε (p) + µ

)
(5.19)

with ε(p) = p2/2m the kinetic energy. In deriving (5.18) we explicitly used the anti-
commuting nature of the fields. One may note that the matrix E2 is diagonal

E2 =
(

(ε− µ)2 + |∆|2 0
0 (ε− µ)2 + |∆|2

)
(5.20)
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This implies that the eigenvalues of E occur in pairs

E± = ±
√

(ε− µ)2 + |∆|2 = ±E (p) . (5.21)

Hence, the energy spectrum of the Fermi-excitations exhibits a gap, that is, the excitation
energy cannot be less that |∆|. The gap value is reached for ε = µ, which at low tem-
peratures may be put equal to the Fermi energy εF = µ (T = 0). The gap is qualitatively
explained as the finite binding energy of the Cooper pair formed by two electrons close
to the Fermi surface.

Exercise 5.3

Determine the eigenvalues of the matrix E by solving the secular equation

det
(
E2 − λ21

)
= 0. (5.22)

Formally we may apply a similarity (canonical) transformation to the matrix E to bring it
in diagonal form. The resulting expression for the reference thermodynamic potential then
takes the form of partition function for an ideal gas of two types of particles with energies
given by (5.21). Without further calculation we write down the explicit expression

Φref = −
∑
±

∑
p

log
(
1 + e−βE±

)
. (5.23)

The reasoning applies for a constant gap, but a generalization to a gap function which
depends on |p| can easily be incorporated.

Exercise 5.4

a. Consider the bilinear Hamiltonian operator

K̂0 =
∑
ij

â†i tij âj, (5.24)

where tij is an hermitian matrix, and âi satisfies the standard canonical (anti-)

commutation relations. Argue that this K̂0 can always be brought into the diagonal
form K̂0 =

∑
i
εi â

†
i âi.

b. Calculate the partition function

logZ = ±
∑
i

log
(
1± e−βεi

)
, (5.25)

where each mode contributes an additive term.
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Let us now consider the gap equation (5.14) for constant ∆, which we may assume to be
real: ∆ = |∆|. Functional differentiation becomes ordinary differentiation which is easily
performed. From (5.23) we find:

∂Φref

∂∆
= −β∆

∑
p

tanh 1
2
βE

2E
. (5.26)

Substituting this result in the gap equation and canceling the common factor ∆, we find

1 =
λ

(2π)3

∫
d3p

tanh 1
2
βE

2βE
, (5.27)

where we changed from summation to integration by the rule (2.42). The last equation
is the BCS-gap equation which is a non-linear integral equation for the gap parameter
as a function of temperature ∆ = ∆(T ). One may note immediately that this equation
would have no solution if λ < 0, i.e. in the case of repulsion, since the two sides would
have opposite sign.

Since the general solution of the gap equation requires numerical methods we shall
confine ourselves to some limiting behaviour. For that purpose it is convenient to change
variables to ξ = ε(p) − µ and to introduce the density of states according to the formal
definition

ν (ξ) = 2
∫ d3p

(2π)3 δ (ξ − ε (p)− µ) . (5.28)

When integrands are peaked near the Fermi surface, we may use the approximation ν(ξ) ∼=
ν(0) =: νF . The symmetry of the integrand of (5.27) then allows us to write

1 = λνF

∫ ωD

0
dξ

tanh 1
2
βE

2E
. (5.29)

The integral must be cut off at some value ωD to render it convergent. In the present model
the interaction with the crystal lattice leads to an attractive force between the electrons.
Since the Debije energy ωD is a measure for the inverse lattice spacing, this leads to
the condition that only electrons with energies of thickness 2ωD about the Fermi surface
participate. In all practical cases we have ωD << εf . Typical values are ωD ∼ 100K and
εF ∼ 10.000K.

Exercise 5.5

a. Calculate ν(ξ) for the present model.

b. Show that the density of states at the Fermi surface is given by νF = mpF/π
2 where

pF is the Fermi momentum.

In the zero-temperature limit equation (5.29) reduces to

1 = λvF

∫ ωD

0

dξ

2E
. (5.30)
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Figure 5.1: Temperature dependence of the energy gap in the BCS- theory

The integral is elementary and gives

∆ (0) =
ωD

sinh (2/λνF )
, (5.31)

For many superconductors the dimensionless coupling constant g = 1/2λνF is small:
g ∼= 0.2− 0.3. In the weak-coupling limit we obtain

∆ (0) = 2ωDe
− 1
g , (5.32)

which depends sensitively on the value of coupling constant. One may note that the point
g = 0 is an essential singularity. This non-analyticity means that the above results can
never be obtained by a perturbation expansion the small parameter g.

In the opposite limit T → Tc the gap vanishes by definition and we find

1 = g
∫ ωD

0

dξ

ξ
tanh

ξ

2Tc
. (5.33)

It is possible to solve this implicit equation for Tc (see e.g. reference [10]). The result is

ωD e
−1/g. (5.34)

We see that Tc and the zero-temperature gap both depend in the same way on the coupling
constant g. This dependence cancels in forming the ratio

2∆ (0)

Tc
= 3.52, (5.35)

which is a universal constant independent of the material. Experimental results give
reasonable agreement with this value.
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The temperature dependence of the gap can be computed numerically. For weak
coupling superconductors ∆(0) << ωD, the ratio ∆(T )/∆(0) is a universal function de-
termined by

log
∆ (T )

∆ (0)
= −2

∫ ωD

0

dξ

E

1

eβE + 1
, (5.36)

which decreases monotonically to zero at Tc, as shown in figure 1.
Near T = 0 the temperature variation is exponentially slow

∆ (T ) ≈ ∆ (0)−
√

2π∆ (0)Te−∆(0)/T , (5.37)

so that the hyperbolic tangent is nearly unity and insensitive to T . This means that ∆
is nearly constant until a significant number of excitations is thermally excited. On the
other hand, near Tc,∆(T ) drops to zero approximately as

∆ (T ) ≈ π

[
8

7ζ ()

] 1
2

(Tc − T )
1
2 . (5.38)

The variation of the order parameter with the square root of Tc − T is characteristic of
all mean field theories.

Exercise 5.6

a. Derive (5.37) from (5.36). For details consult ref [10].

b. Near Tc expand directly in powers of ∆ to prove (5.38).

5.3 Thermodynamic properties

For the subsequent calculations we start from the thermodynamic potential (5.15) spe-
cialized to the case of a constant gap

Φ = Φref −
βV

λ
∆2. (5.39)

The first term is the thermodynamic potential (5.23) of the reference system, i.e. an ideal

gas of fermion excitations (quasi particles) with energies E± = ±E = [(ε−µ)2 + ∆2]
1
2 . In

the present uniform system the spatial integration merely introduces the volume factor
V.

The entropy is obtained by differentiation

S = −Φ− T ∂Φ

∂T
= −Φref − T

∂Φref

∂T
. (5.40)

The temperature dependence of the gap function can be ignored in the differentiation,
since Φ is stationary with respect to variations δ∆. Working out the right-hand side we
obtain

S = −2
∑
p

[f log f + (1− f) log (1− f)] , (5.41)
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where

f (E) =
1

eβE + 1
(5.42)

is the quasi-particle distribution function. As one could have expected, the expression is
of the usual form for a free fermion gas.

Exercise 5.7

a. Check equation (5.40).

b. Derive equation (5.41). Useful identities are

∂

∂βE
f = −f (1− f) , (5.43)

log
f

1− f
= −βE. (5.44)

Let us now first consider the heat capacity given by

C =
T

V

∂S

∂T
= 2

T

V

∑
p

∂f

∂T
log

f

1− f
. (5.45)

Using (5.44) and changing from summation to integration, we get

C = νF

∞∫
−∞

dξE
∂f

∂T
. (5.46)

In the limit T ∼ ξ � ∆, the quasi-particle energy may be approximated as E ∼ ∆0 +
1
2
ξ2/∆0, where ∆0 = ∆(0), and the quasi-particle distribution as f ∼ exp−E/T . A

simple integration gives the heat capacity in the superconducting phase as

Cs = νF

√
2π∆5

0

T 3
e−∆0/T . (5.47)

Thus, as T → 0, the heat capacity decreases exponentially. This is a direct consequence
of the presence of the gap in the energy spectrum.

Another interesting limit is near the transition temperature Tc. Then, as ∆(T ) → 0,
one can replace E by ξ in (5.46) after working out the temperature derivative:

Cn = νFT

∞∫
−∞

dx
x2ex

(ex + 1)2 =
1

3
π2νFT. (5.48)

The second term is finite below Tc, where the temperature derivative is large. The dis-
continuity is readily evaluated as follows.

∆C = Cs − Cn = −1

2
νF
∂∆2

∂T

∣∣∣∣∣
Tc

(5.49)
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Figure 5.2: Heat capacity in the superconducting and normal states

Using now the approximate form (5.38) for ∆(T ), we obtain

∆C =
4πνF
7ζ(3)

Tc = 4.7νFTc (5.50)

The behavior of the heat capacity is shown in Figure 2.
We now wish to calculate the difference between the thermodynamic potential Φs in

the superconducting state and the value Φn it would have in the normal state (∆ = 0) at
the same temperature. It is convenient to start from the formula

∂Φ

∂λ
= −βV

λ2
∆2 (5.51)

obtained from (5.39) by taking the derivative with respect to the coupling constant λ.
We define Φn = Φ(λ = 0). We then may write

Φs − Φn = βνFV

g∫
0

∆2d

(
1

g′

)
, (5.52)

where we changed to the coupling constant g = 1
2
λνF . At absolute zero ∆ = ∆0, and

from (5.32)
d∆0

d
(

1
g

) = −∆0. (5.53)

Changing in (5.52) to an integration over ∆0, we find the following expression for the
difference between the thermodynamic potentials of the superfluid and normal system:

Φs − Φn = −1

2
βνFV∆2

0. (5.54)

The negative sign indicates that the normal state is unstable against the formation of
Cooper pairs and that the superconducting state has indeed a lower thermodynamic
potential. We can interpret expression (5.54) as the binding energy ∆0 per pair multiplied
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by the number of pairs 1
2
νF∆0 per unit volume lying within the shell of thickness ∆0

around the Fermi surface.
Let us now take the opposite case T → Tc. We now differentiate (5.36) with respect

to g, and find
7ζ (3)

4π2T 2
∆d∆ =

d∆0

∆0

= −d
(

1

g

)
. (5.55)

We substitute this into (5.52)

Φs − Φn = − 7ζ (3)

8π2T 3
νFV

∆(T )∫
0

∆3d∆ (5.56)

and then use the approximate result (5.38) for the temperature dependence of ∆(T ). In
this way we obtain finally

Φs − Φn = −V 2π2νF
7ζ (3)

Tc

(
1− T

Tc

)2

. (5.57)

The difference of entropies in therefore

Ss − Sn = −V 4π2νF
7ζ (3)

Tc

(
1− T

Tc

)
, (5.58)

and we recover the discontinuity (5.50) between the heat capacities as derived earlier.

Exercise 5.8

Taking into account higher order terms, calculate

Cs (T )

Cn (Tc)
= 2.43 + 3.77

(
T

Tc
− 1

)
. (5.59)

It must be remarked, that in addition to the Fermi-type excitation spectrum dealt with
here, the heat capacity also contains a contribution from the phonon branch. The heat
capacity due to phonons is ∼ T 3 with a small coefficient, but as T → 0 it must ultimately
predominate over the exponentially decreasing heat capacity (5.47).

5.4 Ginzburg-Landau Expansion

As we have seen above, the complete expression for the thermodynamic potential for a
BSC superconductor cannot be treated analytically. However, in the temperature range
near the transition temperature Tc we may apply the general ideas of the Ginzburg-Landau
(GL) theory; see section 3.5. The startingpoint is the expression

1

βV
(Φs − Φn) = α2∆2 + α4∆4, (5.60)
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which may be viewed as a Taylor expansion of the thermodynamic potential with respect
to ∆ in which only the first two terms have been retained. These terms should be adequate
so long as one stays near the second-order phase transition.

We have already discussed in section 3.5 that two cases may arise depending on whether
the coefficient α2 is positive or negative. If it is positive, the minimum occurs at ∆̄ = 0
corresponding to the normal state. On the other hand, if α2 < 0 the minimum occurs
when ∆̄2 = −α2/2α4. The coefficient α2 is a function of temperature given by

α2 = α(T − Tc). (5.61)

Substituting these results back into (5.60), we find the difference in the thermodynamic
potentials of the superconducting and normal states as

1

βV
(Φs − Φn) = − α2

2α4

(Tc − T )2 . (5.62)

Comparison of this last expression, and the one for ∆̄, with the same quantities in the
BCS theory (5.57) and (5.38), respectively, gives the values

α2 = −1

2
νF

(
1− T

Tc

)
, α4 =

7ζ (3)

32π2

νF
T 2
c

. (5.63)

With these identifications there is complete agreement with the relevant results obtained
in the preceding section.

Exercise 5.9

a. Verify that the discontinuity (5.50) in the heat capacity is correctly given by the
GL-theory.

b. Rewrite the GL-expansion for the BCS model in the form

Φs − Φn = β
∫
d3x

(
aη2 +

1

2
bη4

)
, (5.64)

where

a = − 1

2mξ2
0

(
1− T

Tc

)
, (5.65)

b =
1

mnξ2
0

, (5.66)

in terms of the BCS coherence length given by

ζ2
0 =

7ξ (3)

48π2

ν2
F

T 2
c

. (5.67)

and the density n = p3
F/3π

2. Infer the definition of the order parameter η in terms
of the gap parameter.
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So far we have confined ourselves to an energy gap which is constant in space. However,
there are many interesting situations in which a spatial inhomogeneity is an essential
feature. Such situations may also be dealt with in the framework of the GL-theory by
expanding the thermodynamic potential of spatially inhomogeneous superconductors in
powers of |η(x)|2 and |∇η(x)|2. To conform to the standard conventions we employ the
wave function η(x) as order parameter field. The latter differs by a trivial normalization
factor from the gap function ∆(x); see exc. 5.9. The basic postulate is that, if η(x) is
small and varies slowly in space, the thermodynamic potential can be expanded in the
form

Φs − Φn = β
∫
d3x

(
1

2m∗
|∇η|2 + a |η|2 +

1

2
b |η|4

)
, (5.68)

where m∗ is a mass parameter. In the phenomenological theory this parameter is ex-
perimentally inaccessible, since a redefinition of m∗ can always be absorbed into the
normalization of the order-parameter. It is conventional to equate m∗ with the electron
mass m.

The form of the expansion (5.68) is established by the general consideration that the
thermodynamic potential should be invariant under a global change of phase of the order-
parameter. By imposing the stronger condition of local gauge invariance we introduce the
coupling with the electromagnetic field through the minimal substitution ∇ → ∇−2ieA.
When certain boundary conditions are imposed, the order-parameter field η(x) adjusts
itself so as to minimize the volume integral (5.68). The complex quantity η(x) is a set of
two real quantities, so that η and η∗ must be regarded as independent functions in the
variation. The variational problem leads to the GL-equation for the order-parameter(

− 1

2m
∇2 + a+ b |η|2

)
η = 0. (5.69)

Apart from the non-linear term, the equation has the form of the Schrödinger equation
with energy eigenvalue −a. The non linear term acts like a repulsive potential of η on
itself, tending to favour order parameters which are spread out as uniformly as possible
in space.

Exercise 5.10

a. Derive the GL-equation in the presence of a field B = ∇∧A.

b. Varying the GL-functional with respect to A, derive the inhomogeneous Maxwell
equation (4.64) with the current density as given in (4.60).

It is immediately obvious that the GL-equation (5.69) contains a characteristic correlation
length given by

ξ2 (T ) =
1

2m |a|
= ξ2

0

(
1− T

Tc

)−1

, (5.70)

where ξ0 is the BCS coherence length given in (5.67). This defines a scale for the variations
of the order-parameter. The physical significance becomes evident when we consider the
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Green-function equation associated with the GL-equation (5.69) linearized around the
solution η̄ = −a/b: (

−∇2 + ξ2
)
G0 (x,x′) = δ (x− x′) . (5.71)

The asymptotic solution has the form

G0 (x,x′) ∼ 1

4π |r|
e−r, (5.72)

where r = |x − x′|, as is easily checked by direct substitution. This shows that a small
disturbance decays exponentially with characteristic length ξ(T ). This length should be
large in comparison with ξ0, i.e. the dimension of the Cooper pair, in order that all
quantities vary sufficiently slowly in space. At the critical temperature the correlation
length ξ(T ) diverges as |Tc−T |−ν , with ν = 1

2
the mean field value for the critical exponent

ν. Hence, the condition is in general satisfied near the transition point.
The GL-expansion is valid near the critical temperature, but not too close because

of the occurrence of critical fluctuations. This anomalous increase in the fluctuations of
the order-parameter is due to the flatness of the thermodynamic potential minimum near
the transition point. We may estimate the range of this so-called Ginzburg region by
writing the GL-functional in terms of dimensionless fields. We rescale x = ξ(T )y and
βξ3|a||η|2 = |χ|2. Then we may write

Φs − Φn =
∫
d3yχ∗

(
∇2
y + 1− g |χ|2

)
χ, (5.73)

where the dimensionless coupling constant, which can be calculated with the help of (5.65)
and (5.66), appears as

g−1α
(
TF
Tc

)2 (
1− T

Tc

) 1
2

, (5.74)

in terms of the critical temperature and the Fermi temperature TF = p2
F/2m. The nu-

merical proportionality constant is of order one. We expect the theory to break down if
g > 1. In the present case this condition is extremely weak since it implies the Ginzburg
criterium

1− T

Tc
>
(
Tc
TF

)4

. (5.75)

The ration Tc/Tf ∼ 10−3 − 10−4 is very small. Hence, this condition is satisfied almost
up to the transition point itself and the fluctuation region for the transition practically
disappears. This explains of course why the GL-theory as been so successful in describing
the superconductivity.

From the derivation of (5.73) it is obvious that the critical exponent of the coupling
constant g depends on the dimensionality of space. In fact, in D dimensions one finds

g ∝ |T − Tc|(D−4)/2 . (5.76)

This critical exponent is such that for D > 4, g → 0 as T → Tc, implying that a
perturbative expansion becomes increasingly accurate as one approaches the critical point.
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On the other hand, for D < 4, g → ∞ as T → Tc and perturbation theory breaks down
close to the transition temperature. In this Ginzburg region the GL-theory is invalid.

Exercise 5.11

a. Write ∆(x) = eiφ(x)[|∆̄|+ f(x)] and derive the linearized GL-equations satisfied by
the two real fields φ(x) and f(x).

b. Argue that f(x) may be regarded as a massive mode with mass squared m2
f =

2ζ−1(T ), and that the Goldstone mode φ(x) may be regarded as massless.
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