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Chapter 1

Introduction

In these lecture notes we discuss some aspects of quantum fields at finite temperature
and chemical potential. We will use the name “Thermal Field Theory (TFT)” to indicate
the modern version of quantum-mechanical many-body theory originally developed in the
fifties and sixties. TFT deals with the behavior of large assemblies of elementary particles
at non-zero temperature, and can be considered as an amalgam of statistical mechanics
and elementary-particle physics with applications to the early universe, to astrophysics
and to ultra-relativistic nucleus-nucleus collisions.
We shall be concerned with the basic formal content of TFT and its perturbative

structure. In the first chapters we shall mainly look at the oldest and most often used
imaginary-time (Euclidean) formalism. It is based on the formal analogy, first noted by
F. Bloch in 1932, between inverse temperature and imaginary time. It leads to so-called
temperature Green functions with purely imaginary time arguments. That is, one works
in Euclidean space. The formalism was developed by many authors but is usually named
after Matsubara (1955), who was the first to set up a diagrammatic perturbation theory
for the grand partition function on a field-theoretic basis.

1.1 Some history

Before we introduce the basic concepts of Thermal Field Theory we start with a short
historical survey. In the fifties several physicists, among them Kadanoff, Martin and
Schwinger, realized that field-theoretic methods were useful in the study of non-relativistic
quantum problems as well. It was discovered that practically all statistical observables in,
or close to thermal equilibrium, like the equation of state, the thermodynamic response
functions and most transport coefficients, could be expressed in terms of Green functions
similar to those encountered in quantum field theory. This led to the development of
perturbative techniques based on Feynman diagrams, as well as more general methods
based on the use of the exact Green functions. This Many-Body Theory, as it was called
was codified in a number of well-known text books, e.g. Fetter and Walecka (1971).
The generality of the results invited the extension to relativistic problems by Silin

and Fradkin in the sixties. In the early seventies new developments were triggered by
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the interest in the problem of symmetry restoration at high temperature. This new
direction in thermal field theory came about through a paper by Kirzhnits and Linde
in 1972, who pointed out that one should expect a symmetry-restoring phase transition
in the Weinberg-Salam model of weak interaction, in analogy to ferromagnetism and
superconductivity. The general idea that broken symmetries in relativistic quantum field
theory should be restored at high temperature was subsequently elaborated by Weinberg
(1974), Dolan and Jackiw (1974) and by Linde himself.
The obvious next step was to study Quantum Chromo Dynamics (QCD) in thermal

field theory. This was initiated by Collins and Perry (1975), who argued that the strong
interaction becomes weak not only at very high momentum transfer, as in deep inelastic
scattering, but in ultra-dense nuclear matter as well. This seems evident from the usual
heuristic picture of asymptotic freedom. The argument was rapidly extended to the case of
low densities but very high temperatures (∼ 150 MeV). The idea of asymptotic freedom at
high temperature and/or density led to the notion of the Quark-Gluon Plasma (a name
coined by Shuryak (1980). In the most naive picture, the phase diagram of QCD has
two regions: a low-temperature phase in which quarks and gluons are confined, and a
high-temperature phase (the Quark-Gluon Plasma) in which these particles are liberated
and interact only weakly. The existence of this new state of matter may have been
experimentally confirmed at CERN last year.
In recent years thermal field theory also has been applied with some success to other

high-temperature phase transitions in gauge theories. For example, a first-order phase
transition in the standard electroweak theory at T ∼ 100GeV = 1015K, about t = 10−10

seconds after the Big Bang, may drive baryogenesis. Below the electroweak phase tran-
sition, the particles in the standard model acquire their masses through the Higgs mech-
anism. Above the phase transition, the Higgs expectation value is zero and the parti-
cles are massless. To determine the critical temperature, the effective potential at high-
temperature has to be calculated. An idea that has been elaborated by Kajantie and
others (1994) is to calculate the effective potential in a dimensional reduction scheme by
integrating out all modes, except the lightest. This allows one to consider 4D field theory
at finite temperature as a 3D field theory at zero temperature, with an effective mass and
coupling constant.

1.2 Grand canonical ensemble

The state of a system of many particles in equilibrium is characterized by the conserved
quantities of the system. For a quantum system these usually are the time-independent
Hamiltonian Ĥ , and a number of conserved and mutually commuting charges Q̂a, a =
1, 2, ...., such as lepton number, baryon number, etc. (The circumflex indicates a quantum
mechanical operator in the Heisenberg picture.) In statistical mechanics it is assumed
that these quantities give a complete macroscopic description of the equilibrium state for
a system at rest in a large volume V .
Because in relativistic field theory particles are continually being created and de-
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stroyed, it is appropriate to use the grand canonical ensemble in which the average charge
densities Na and the energy density E are fixed. By maximizing the entropy functional

S[ρ] = − 1
V
Trρ̂ log ρ̂ (1.1)

for the density operator ρ̂, one finds that the most probable configuration is specified by
the grand canonical density operator

ρ̂ = exp

(
V Ω−∑

a

αaQ̂a − βĤ
)
. (1.2)

Since any density operator is by definition a positive operator of unit trace: Trρ̂ = 1,
the thermodynamic potential V Ω = − logZ is found by calculating the grand canonical
partition function

Z(αa, β, V ) = Tr exp

(
−∑

a

αaQ̂a − βĤ
)
, (1.3)

where the trace may be taken over any complete (not necessarily orthonormal) set of
states. The Lagrange multipliers αa, β are related to the temperature T and the indepen-
dent chemical potentials µa through β

−1 = kBT, αa = −βµa, and are conjugate to the
charge densities and energy density through the relations

Na =
1

V
〈Q̂a〉 = ∂Ω

∂αa
, (1.4)

E =
1

V
〈Ĥ〉 = ∂Ω

∂β
, (1.5)

where the brackets indicate the grand-canonical average. For some systems of bosons there
are no conserved quantum numbers Q̂ and therefore no corresponding Lagrange multiplier.
Then the grand-canonical ensemble reduces to the canonical ensemble exp−βĤ . 1

From the thermodynamic potential Ω, we may define

P (T, µa) = − 1
β
Ω , (1.6)

which may be identified with the thermodynamic pressure on account of the variational
relation

δP = SδT +
∑
a

Naδµa , (1.7)

which is an immediate consequence of the above formulae. This shows that the thermo-
dynamic pressure, as a function of the independent variables T and µa, is a characteristic
thermodynamic function from which other thermodynamic quantities may be obtained by

1In the following we will use units such that kB = 1, h̄ = 1, c = 1; but where appropriate these
constants will be written explicitly.
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differentiation. The additivity of the entropy SV = −〈log ρ̂〉 provides us with the Euler
relation

S = βP + βE +
∑
a

αaNa, (1.8)

which expresses the entropy density S in terms of the other thermodynamic variables.
Since many applications of thermal field theory concern relativistic systems one might

well ask, how the Gibbs ensembles are adaptable to such situations. The answer is
that thermodynamics and statistical mechanics can be formulated in a covariant way
by introducing the notion of a local observer moving at some hydrodynamic velocity
Uµ(x), UµUµ = 1. For a system in equilibrium it is sufficient to consider a global hydro-
dynamic velocity characterizing the system, which has the components Uµ = (1, 0, 0, 0) for
a system at rest. The maximum entropy principle can be applied in the standard manner
and leads to the grand canonical ensemble of the form (1.2) with the only difference that
the Hamiltonian and the charges are now defined with respect to the rest frame

Q̂a = UµĴ
µ
a , (1.9)

Ĥ = UµP̂
µ , (1.10)

where Ĵa and P̂
µ are the conserved currents and energy momentum operators, respec-

tively, of the system. The temperature T , the chemical potentials µa, and all other
thermodynamic quantities, are always measured with respect to the rest frame.
Thermodynamic relations can be written in a covariant form by introducing the macro-

scopic current flows and energy-momentum tensor

Jµa = 〈Ĵµa 〉 = NaUµ , (1.11)

T µν = 〈T̂ µν〉 = (E + P )UµUν − gµνP . (1.12)

In the rest frame, the energy-momentum tensor is diagonal with diagonal components
T µν = Diag(E, P, P, P ). In terms of these covariant quantities we may write the entropy
flow as

Sµ = SUµ = αaJ
µ
a + βµT

µν − ΩUµ , (1.13)

where the inverse temperature four-vector has the definition βµ = βUµ. It follows from
these equations that

δ(Pβµ) = Jµa δαa + T
νµδβν . (1.14)

The last two relations show how the basic variables Jµ, T µν , Sµ, can all be generated from
partial derivation of the thermodynamic four-potential Ωµ = −Pβµ.
In the covariant formulation, the hydrodynamic velocity becomes a thermodynamic

variable on par with the temperature and the chemical potentials. Since the covariant
thermodynamic relations are expressed directly in terms of the basic conserved currents
and energy-momentum tensor, they are more transparent. Physically, however, no new
information is gained, and in the rest frame the standard thermodynamic relationships
are recovered.
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1.3 Scalar Bose field

The thermal average of an observable corresponding to some quantum mechanical operator
Â is defined as

〈Â〉 = 1

Z
TrÂ . (1.15)

In particular we will be interested in the thermal average of a number of fields. Con-
sider, for example, the case of a Hermitian scalar Bose field φ̂(x), carrying no conserved
charges, with conjugate momentum π̂(x) = ∂0φ̂(x), whose dynamics is governed by the
Hamiltonian

Ĥ =
∫
d3x

[
1
2
π̂2 + 1

2
(∇φ̂)2 + V(φ̂)

]
. (1.16)

We define
φ̂(x) = eitĤ/h̄φ̂(0,x)e−itĤ/h̄ , (1.17)

where the time coordinate x0 = ct may be complex. Observable dynamical properties of
the system can be extracted from thermal correlation functions

C(x1, x2, . . . , xN ) = 〈φ̂(x1)φ̂(x2) . . . φ̂(xN )〉 (1.18)

defined as the statistical average of a product of Heisenberg fields. In equilibrium these
correlation functions are translation invariant, meaning that they only depend on the
coordinate differences. Moreover equilibrium correlation functions satisfy the so called
KMS (Kubo-Martin-Schwinger) condition:

〈φ̂(x1)φ̂(x2) . . . φ̂(xN )〉 = 〈φ̂(x2) . . . φ̂(xN )φ̂(x1 + ih̄β)〉 . (1.19)

This is a special case of a fundamental equivalence between quantum field theory and
quantum statistical mechanics, based on the formal correspondence between imaginary
time and inverse temperature:

e−βĤ ↔ eiĤt/h̄, t = iβh̄ , (1.20)

which was first noted by Felix Bloch in 1932. The proof of (1.19) involves no more than
the cyclic invariance of the trace.
Let us calculate the 2-point correlation function for the system without interaction.

The field may be expanded in the usual manner

φ̂(x) =
∑
k

[
fk(x)âk + f

∗
k (x)â

†
k

]
(1.21)

in terms of creation and annihilation operators satisfying the commutation relations:[
â†k, â

†
l

]
= 0 , (1.22)

[âk, âl] = 0 , (1.23)[
âk, â

†
l

]
= δkl . (1.24)
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The labels k, l stand for all quantum numbers needed to specify the complete set of mode
functions satisfying the Klein-Gordon equation (∂2 +m2)fk(x) = 0. For spinless bosons
in a finite volume V = L3, these are simply plane waves

fk(x) =

√
h̄c

2ωkV
eik·xe−iωkt , (1.25)

with ωk =
√
k2 +m2 and momentum quantum numbers k = 2πn/L,n = (n1, n2, n3), ni

integer. The mode functions are normalized by the Wronskian-type conditions

∑
k

[fk(x)∂tf
∗
k (x

′)t=t′ − f ∗
k (x)∂tfk(x

′)t=t′ ] = ih̄c δ(x− x′) , (1.26)

∫
d3x [fk(x)∂tf

∗
l (x

′)t=t′ − f ∗
k (x)∂tfl(x

′)t=t′ ] = ih̄c δkl , (1.27)

as required by the canonical equal-time commutation relation[
φ̂(x), π̂(x′)

]
t=t′

= ih̄ δ(x− x′) . (1.28)

Before closing this section we make a short remark about dimensions. Usually we will
set h̄ = c = 1, so that energy will have the dimension of inverse length: [E] = [L−1].
The constants c, h̄ can always be restored by dimensional analysis. Suppose now that
we set c = 1 but keep h̄. This is useful for identifying classical contributions. Since h̄
has a dimension of energy times length, [h̄] = [EL], we no longer have [E] = [L−1]. By
inspection of the Hamiltonian, we find then the following dimensions: [φ2] = [EL−1], [m] =
[L−2], [k] = [ωk] = [L−1].

1.4 Ideal Bose gas

Because the operators âk, â
†
k destroy or create modes with energy εk = h̄ωk, the free

Hamiltonian reads
Ĥ0 = 1

2

∑
k

εk(â
†
kâk + âkâ

†
k) , (1.29)

which may be checked by substitution of the mode decomposition of the field into (1.16).
It is now easy to compute the statistical average

〈â†kâl〉0 =
1

Z0
Tre−βĤ0 â†kâl (1.30)

for a free system without actually performing the trace. The cyclic invariance of the trace
allows us to write

〈â†kâl〉0 = 〈âlâ†k(iβh̄)〉0 , (1.31)

where we used the abbreviation:

â†k(iβh̄) = e
−βĤ0 â†ke

βĤ0 . (1.32)
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In consequence of the simple commutation relation[
Ĥ0, â

†
k

]
= εkâ

†
k , (1.33)

and the general rule

eÂB̂e−Â = B +
[
Â, B̂

]
+ 1

2

[
Â,
[
Â, B̂

]]
+ · · · , (1.34)

we obtain
â†k(iβh̄) = â

†
ke

−βεk . (1.35)

We substitute this result back into (1.31) and use the commutation relation (1.24). Solving
for the desired thermal average we get

〈â†kâl〉0 = δkl n(εk), (1.36)

where

n(ε) =
1

eβε − 1 (1.37)

is the Bose-Einstein distribution function. Therefore, in equilibrium the expectation value
(1.30) is diagonal and can be interpreted as the probability for finding a particle with
energy εk. Similarly, we obtain

〈âkâ†l 〉0 = δkl [1 + n(εk)] = −δkl n(−εk) . (1.38)

The thermal averages of two creation or two annihilation operators vanish by the same
reasoning. Moreover the average of any odd number of operators vanishes.

Problem 1.1

a. Show that
〈âkâl〉0 = 0 (1.39)

and that the average of an odd number of operators vanishes.

b. Extend the reasoning to obtain

〈â†k1 . . . â†kn
âln . . . âl1〉0 =

n∑
j=1

〈â†k1 âj〉0〈â†k2 . . . â†kn
âln . . . âj/ . . . âl1〉0 (1.40)

and show by induction that any expectation values factorizes into averages of pairs of
creation and annihilation operators. This is called the thermodynamic Wick theorem.

The above results may be used to calculate the partition function of the free neutral boson
gas

Z = Tr exp− 1
2
β
∑
k

εk(â
†
kâk + âkâ

†
k) (1.41)
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by first calculating the energy density

E = − 1
V

∂ logZ

∂β
=
1

V

∑
k

[εkn(εk) + 1
2
εk] =

1

2V

∑
k

εk
e

1
2
βεk + e−

1
2
βεk

e
1
2
βεk − e− 1

2
βεk

. (1.42)

The result includes the zero-point energy of the vacuum, which one may wish to subtract
off since it is a temperature independent (infinite) constant. Integrating with respect to
the temperature we get for the thermodynamic potential

Ω =
1

V

∑
k

[
log(1− e−βεk) + 1

2
βεk

]
. (1.43)

In the thermodynamic limit we are allowed to make the replacement from sum to integral
by the substitution:

1

V

∑
k

→
∫

d3k

(2π)3
. (1.44)

Then we get

Ω =
∫ d3k

(2π)3

[
log(1− e−βεk) + 1

2
βεk

]
. (1.45)

This is the well known expression for the thermodynamic potential of an ideal Bose gas
when the number of particles is not conserved.
Let us now to calculate the 2-point correlation function for a free system and the

associated spectral density, that is, the commutator of the fields. We anticipate that
these correlation functions will only depend on the relative coordinate, on account of the
translational invariance of thermal averages. Introducing the four-vector kµ = (k0,k), we
write

〈φ̂(x)φ̂(x′)〉0 =
∫

d4k

(2π)4
e−ik·(x−x

′)C̃>0 (k) , (1.46)

〈[φ̂(x), φ̂(x′)]〉0 = h̄c
∫

d4k

(2π)4
e−ik·(x−x

′)ρ0(k) , (1.47)

where ρ0(k) is the spectral density. Going to the continuum limit we find by explicit
calculation:

C̃<0 (k) = h̄cρ0(k)[1 + n(k0)] , (1.48)

ρ0(k) = 2πsign(k0)δ(k
2 −m2) =

π

ωk
[δ(k0 − ωk)− δ(k0 + ωk)] . (1.49)

The right-hand side in the last line is obtained with the help of the delta-function identity

δ (f(x)− f(x0)) = 1

|f ′(x0)|δ(x− x0) . (1.50)

Note that the energy k0 in the expression (1.48) is an independent variable, not the mass
shell energy ωk.
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Problem 1.2

a. Show that the spectral density is an odd function of the energy with the positivity
property

k0ρ0(k) ≥ 0 , (1.51)

b. and has the normalization

∫ ∞

0

dk20
2π
ρ0(k) = 1 . (1.52)

Problem 1.3

Show that the Fourier transform of the correlation function C<0 (x, x
′) ≡ braφ̂(x′)φ̂(x)〉0

satisfies the relationship
C̃>0 (k) = e

βk0C̃<0 (k) (1.53)

owing to the KMS condition. Since the KMS condition generally applies, the same
relationship can be shown to hold true for interacting 2-point correlation functions.

1.5 Thermal propagators

The most important quantities in thermal field theory are the thermal Green functions

G(x1, x2, . . . , xn) = 〈T φ̂(x1)φ̂(x2) . . . φ̂(xn)〉 , (1.54)

where the symbol T prescribes time ordering. In particular the 2-point thermal Green
function for a free system defines the thermal propagator:

ih̄cD(x− x′) = θ(t− t′)〈φ̂(x)φ̂(x′)〉0 + θ(t′ − t)〈φ̂(x′)φ̂(x)〉0 . (1.55)

The function D is called a propagator since it is a Green function of the Klein-Gordon
differential operator, that is

[(i∂)2 −m2]D(x− x′) = δ(x− x′) , (1.56)

as is easily checked by explicit calculation. One of the solutions of this equation is the
well known Feynman propagator of zero-temperature field theory

DF (x− x′) =
∫

d4k

(2π)4
1

k2 −m2 + iε
e−ik·x . (1.57)

The main difference between zero-temperature and finite temperature field theory lies in
the form of the propagators; hence, they require a detailed discussion. As we will show,
the fundamental reason is that in thermal equilibrium the propagator has to satisfy the
boundary condition prescribed by the KMS condition (1.19).
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We may determine a spectral representation for the time-ordered thermal propagator
from its definition (1.55) and the previous result (1.48) as

iD(x− x′) =
∫

d4k

(2π)4
ρ0(k)e

−ik·(x−x′)[θ(t− t′) + n(k0)] . (1.58)

Like the Feynman propagator, the thermal propagator is a Green function of the inho-
mogeneous Klein-Gordon equation.

Problem 1.4

Establish that (1.58) is a solution of the inhomogeneous Klein-Gordon equation
(1.56).

Putting θ(t) = e−εt, we calculate the Fourier transform of expression (1.58) as

iD̃(k) =
i

k2 −m2 + iε
+ 2πδ(k2 −m2)n(|k0|) . (1.59)

The remarkable feature of this expression, which was first obtained by Dolan and Jackiw
(1973), is that it consists of the sum of the vacuum Feynman propagator and a thermal
contribution from the heat bath. Since the particles are free, they are on shell. Note
that the absolute value of the energy variable appears in the Bose-Einstein distribution
function. This is an awkward feature in calculations.
For reasons that will become clear later on, we also need the thermal propagator for

imaginary time t = −iτ , with the imaginary time-coordinate taking values−βh̄ ≤ τ ≤ βh̄.
Formally this Euclidean propagator is obtained from the spectral representation (1.58) by
setting t− t′ = −iτ

∆(τ,x) = iD(−iτ,x)
=

∫
d4k

(2π)4
ρ0(k)e

−τk0eik·x[θ(τ) + n(k0)] . (1.60)

This propagator is the solution of the inhomogeneous partial differential equation

(−∂2τ −∇2 +m2)∆(τ − τ ′,x− x′) = δ(τ − τ ′)δ(x− x′) . (1.61)

By inspection we see that the thermal propagator is periodic in the time variable τ , with
period βh̄, as a consequence of the KMS condition.

Problem 1.5

Show that ∆(τ−βh̄) = ∆(τ), if 0 ≤ τ ≤ βh̄, and ∆(τ+βh̄) = ∆(τ) if −βh̄ ≤ τ ≤ 0.
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A useful representation of the thermal propagator is

∆(τ,x) =
∫

d3k

(2π)3
eik·x∆(τ,k) , (1.62)

∆(τ,k) =
1

2ωk

{
[θ(τ) + n(ωk)]e

−τωk + [θ(−τ) + n(ωk)]eτωk

}
, (1.63)

which follows from (1.60) by integrating out the energy variable.

Problem 1.6

Show that the Euclidean thermal propagator in the mixed representation can be writ-
ten as

∆(τ,k) =
∑
s=±1

s

2ωk
[θ(τ) + n(sωk)]e

−sτωk . (1.64)

This representation is very convenient for doing the frequency summations in dia-
grams.

Since the Euclidean thermal propagator is periodic on the time interval [0, βh̄], we may
define a discrete Fourier transform

∆̃(iωn,k) =
∫ a
a−βh̄

dτeiωnτ∆(τ,k) , (1.65)

independent of 0 ≤ a ≤ βh̄, defined for discrete so called Matsubara frequencies ωn =
2πn(βh̄)−1, with n integer. Doing the Fourier transform, or more simply, solving equation
(1.61) in Fourier space:

(ω2n + ω
2
k)∆̃(iωn,k) = 1 , (1.66)

we obtain the Euclidean propagator, also called Matsubara propagator

∆̃(iωn,k) =
1

ω2n + ω
2
k

. (1.67)

We see that the Euclidean thermal propagator looks exactly like a propagator in Minkowski
space, with the difference that the variable k0 takes the discrete and imaginary values
k0 = iωn. The Fourier inversion theorem permits the Euclidean propagator (1.60) to be
written as the Fourier sum

∆(τ,x) =
1

βh̄

∞∑
n=−∞

∫ d3k

(2π)3
eik·x−iωnτ∆̃(iωn,k) . (1.68)

This expression exists for real τ , and is periodic with period βh̄.

Problem 1.7
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Use (1.63) and (1.68) to show that

1

βh̄

∞∑
n=−∞

1

ω2n + ω
2
=
1

ω
[1 + 2n(ω)] . (1.69)

This is an example of a summation formula for Matsubara frequencies.

It is possible to maintain a useful formal analogy with the vacuum theory by defining a
four-vector kµ = (k0,k) with imaginary time component k0 = iωn. In view of (1.68), we
may then write the Euclidean propagator as

DE(x) =
1

βh̄

∑
n

∫ d3k

(2π)3
i

k2 −m2
e−ik·x . (1.70)

This expression may be thought of as being obtained from the corresponding vacuum
expression by the substitution ∫

dk0
2πi

→ 1

βh̄

∑
n

(1.71)

with the understanding that the time and the real continuous energy variable must be
replaced by t = −iτ, k0 = iωn, respectively.
It is important to stress that the Matsubara propagator (1.67) in Fourier space is

not the analytic continuation of the thermal propagator, but of Fourier transforms of the
retarded and advanced Green functions.

ih̄DR(x− x′) = θ(t− t′)〈
[
φ̂(x), φ̂(x′)

]
〉0 , (1.72)

ih̄DA(x− x′) = −θ(t′ − t)〈
[
φ̂(x), φ̂(x′)

]
〉0 , (1.73)

which are the causal solutions of the inhomogeneous Klein Gordon equation (1.56). These
Green functions play an important role in the description of the dynamical behavior
of the system, in particular the propagation of small perturbations. Using the Fourier
representation of the spectral function (1.47), we immediately get for the Fourier transform
of the retarded and advanced Green functions

D̃R,A(k) =
∫
dk′0
2π

ρ0(k
′
0,k)

k0 − k′0 ± iε
. (1.74)

Integrating over the energy we find the free retarded and advanced Green functions

D̃R,A(k) =
1

(k0 ± iε)2 − ω2k
=

∑
s=±1

1

2ωk

s

k0 ± iε− sωk . (1.75)

They are temperature independent because the spectral density

ρ0(k) = iD
R(k)− iDA(k) = ∑

s=±1

1

2ωk
2πs δ(k0 − sωk) (1.76)
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is essentially the mass shell delta-function. As will be explained later, the physical content
of these Green functions is that they give the energies and life times of the collective
excitations in the system. In the free case, we simply have free particles and the excitations
are of course stable.
To establish the connection of the retarded and advanced propagators with the Mat-

subara propagator (1.67), it is convenient to write the latter in the spectral form

∆̃(iωn,k) =
∫
dk0
2π

ρ0(k)

k0 − iωn . (1.77)

This expression is only defined at a discrete set of points in the complex energy plane.
The analytic extension away from these discrete points such that

∆̃(iωn,k) = ∆(z,k)|z=iωn (1.78)

is not a unique operation without further delimitation. Conventionally one resolves this
ambiguity by imposing the requirements:
(i) |∆(z)| → 0 if |z| → ∞
(ii) ∆(z) is analytic off the real axis.
These requirements imply that this particular analytic extension has the representation:

∆(z,k) =
∫ dk0
2π

ρ0(k)

k0 − z . (1.79)

Comparing with (1.74), we see that D̃R,A(k) represent the boundary values of the analytic
propagator (1.79)

D̃R,A(k) = −∆(k0 ± iε,k) (1.80)

as z approaches the real axis from above and below, respectively.
By using the spectral representation (1.74), we can extend the definition of the retarded

propagator to any complex energy z such that Imz > 0; it then follows that DR(z,k) is an
analytic function in the upper half-plane, where it coincides with the analytic propagator
(1.79), apart from a sign. In the lower half plane, on the other hand, DR(z,k) is defined
by continuation across the real axis, and it may have singularities there. Similarly the
advanced propagator can be defined as an analytic function in the lower half plane.
The spectral density is seen to determine both the retarded and advanced propagators,

as well as the Matsubara propagator and the thermal propagator. This is a general feature
of equilibrium 2-point functions: they all are determined by the spectral density. This
also holds true for interacting systems; in fact all spectral representations we have derived
so far keep their form for full propagators, with an appropriate spectral density.
The connection between the real-time thermal propagator and the analytic propagator

can again be established from the spectral representation. The Fourier transform of (1.58)
yields:

iD̃(k) = i
∫
dk′0
2π

ρ0(k
′
0,k)

k0 − k′0 + iε
+ ρ0(k)n(k0) . (1.81)
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Comparing with (1.79), we see that we may express the time-ordered thermal propagator
in terms of the analytic propagator as follows:

D̃(k) = n(k0)∆(k0 − iε,k)− [1 + n(k0)]∆(k0 + iε,k) (1.82)

which also relates the thermal propagator to the retarded and advanced Green functions.
In this representation the variable k0 is not restricted to be positive as in (1.59).

1.6 Dirac and gauge fields

The above results may be generalized to fermionic fields with spin. Let us consider the
general case of a multi-component covariant complex field ψ̂iα(x) which transforms under
some representation Dαβ of the Lorentz group. This field may carry an arbitrary number
of charges qija such that [

Q̂a, ψ̂
i
α(x)

]
= qija ψ̂

j
α(x) , (1.83)

with qija an Hermitian matrix in the space of internal degrees of freedom labelled by the
indices i, j.
We assume that the free field satisfies a field equation of the form:

Λαβ(i∂)ψ̂β(x) = 0 , (1.84)

where Λαβ(i∂) is a differential operator of finite order. The equation of motion can only
have non-trivial solutions for values of the four-momentum kµ that satisfy det Λ(k) = 0.
This dispersion equation determines the energy k0 = ±ωk of the particles. Since the
equation of motion must be consistent with this dispersion relation, there has to exist a
non-singular differential operator, called the Klein-Gordon divisor, such that

dαβ(i∂)Λβγ(i∂) = Λαβ(i∂)dβγ(i∂) = δαγ(−∂2 −m2) . (1.85)

In that case the solution of the propagator equation

Λαβ(i∂)Dβγ(x− x′) = δαγ δ(x− x′) (1.86)

may be written as
Dαβ(x− x′) = dαβ(i∂)D(x− x′) (1.87)

in terms of the solution of the Klein-Gordon propagator equation (1.56) satisfying the
appropriate boundary conditions.
In the preceding section we have already studied the Klein-Gordon propagator for

scalar bosons. It is not difficult to guess that the solution of equation (1.56) in the
general case has the form

iD(x− x′) =
∫

d4k

(2π)4
ρ0(k)e

−ik·(x−x′)[θ(t− t′) + ηn+(k0)] . (1.88)
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The statistical factors n± = {exp[β(k0±µ)]−η}−1 are the Fermi-Dirac (η = −1) or Bose-
Einstein (η = 1) distribution functions for (anti-)particles having a nonzero chemical
potential.
For spin - 1

2
fields, in particular, we have d(i∂) = iγ · ∂ +m, where the Dirac matrices

γµ satisfy the algebra {γµ, γν} = 2gµν. The corresponding Euclidean thermal propagator
is

SE(x) = (iγ · ∂ +m)DE(x) (1.89)

=
i

βh̄

∑
n

∫
d3k

(2π)3
γ · k +m
k2 −m2

e−ik·x . (1.90)

It can be shown that for fermionic fields the propagator is anti-periodic in the variable
τ with period βh̄. As a consequence the Matsubara frequencies are restricted to be
proportional to odd integer values: ωn = (2n + 1)π(βh̄)−1. Furthermore, for non-zero
chemical potential the energy variable k0 in (1.90) is shifted by µ, and has the discrete
complex values k0 = iωn+µ. With these rules in mind, all results of the preceding section
are easily translated to spin fields.
Gauge fields may be treated in a similar manner and the Euclidean gauge boson and

ghost propagators are easily written down without going through any detailed calculations.
The gauge propagator for a SU(N) gauge theory with a = 1, 2, . . . , N2 − 1 color indices,
in the Feynman gauge, is particularly simple because all indices “go along for a free ride”:

Dabµν(x− x′) = −gµν δabD(x− x′) . (1.91)

Here D(x−x′) is the now familiar Klein-Gordon propagator of the scalar boson field with
m = 0. Similarly the ghost propagator is

Dabgh(x− x′) = −δabD(x− x′) . (1.92)

The gauge fields, being bosonic have to satisfy periodic boundary conditions. The ghosts,
on the other hand , must be treated as anti-commuting pseudo fermion fields, but subject
to the same boundary conditions as the gauge fields. This is a consequence of the fact
that the ghosts have to subtract unphysical contributions of the gauge fields. For these
boundary conditions the finite temperature action is BRS invariant which ensures that
the Slavnov-Taylor identities are easily generalized to finite temperature.
In passing we mention that it would be possible, in principle, to assign anti-periodic

boundary conditions to the unphysical components of the gauge field. In that case the
ghosts would be a likewise anti-periodic as if they were actual fermion fields. The ghosts
would than not represent physical particles in thermal equilibrium, as their only role is to
subtract unphysical contributions due to spurious degrees of freedom of the gauge field.
However, in practice this procedure is rather awkward and not free of computational
difficulties. On the other hand, the procedure is certainly feasible (Landshoff and Rebhan
1992).
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Chapter 2

Feynman Path Integral

A path integral is a formal expression for the transition amplitude between two quantum
mechanical states in terms of an integration over a certain function space. This provides
both a physically intuitive description of the system and a useful starting point for ap-
proximations, such as perturbation theory, and loop expansions around stationary points.
Since it uses the Lagrangian, rather than the Hamiltonian, as its fundamental entity,
the functional formalism explicitly preserves all symmetries of the system. Moreover,
the functional approach provides a unified view of quantum field theory and statistical
mechanics.
Inspired by the essential idea of Dirac (1933), Feynman (1948) developed the path

integral method extensively. The derivation of the Feynman path integral for field theory
is based on the concept of coherent states invented by Klauder (1960) which we introduce
first.

2.1 Coherent States

For simplicity we shall start with a bosonic Fock space spanned by the base vectors

|n〉 = |n1, n2, . . .〉 =
∏
k

(â†k)
nk√
nk!

|0〉 (2.1)

obtained by the repeated action of creation operators on the vacuum state |0〉. For
bosons the values of the occupation numbers nk = 0, 1, 2, · · ·, are unrestricted. Adjoint
base vectors 〈n| are created by the action of annihilation operators âk. These base vectors
span the entire Fock space as expressed by the the completeness relation

∑
{n}
|n〉〈n| = 1 . (2.2)

Creation and annihilation operators satisfy the commutation relations (1.24). All prop-
erties, like the normalization of the base vectors follow from these simple algebraic rules.
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Let us now define coherent states. Canonical coherent states are proper eigenstates of
âk with continuous complex eigenvalue zk defined by

|z〉 = N(z) ez·â† |0〉 , (2.3)

where N(z) is a normalization factor and the scalar product is shorthand for

z · â† =∑
k

zkâ
†
k . (2.4)

Expanding out and using the definition (2.1) we have

|z〉 = N(z)∑
n

∏
k

(zk)
nk√
nk!

|n〉 . (2.5)

The eigenvalue is obtained as

âk|z〉 = N(z)
[
âk, e

z·â†] |0〉 = zk|z〉 . (2.6)

The normalization condition

1 = 〈z|z〉 = |N(z)|2∑
n

∏
k

(z∗k)
nk(zk)

nk

nk!

= |N(z)|2ez∗·z (2.7)

determines the normalization factor as

N(z) = e−
1
2
z∗·z . (2.8)

The overlap of two coherent states is defined as the inner product

〈w|z〉 = N(w)N(z)
∑
n,m

∏
kl

w∗
k
n

√
nk!

z∗l
m

√
ml!

〈n|m〉

= exp(− 1
2
w∗ · w − 1

2
z∗ · z + w∗ · z) . (2.9)

The coherent states are over-complete in the sense that two states |z1〉 and |z2〉 are not
linearly independent if z1 �= z2. On the other hand, |z〉 has a finite norm and it is a proper
element of the Hilbert space, provided z∗ · z <∞.
The important feature of coherent states is that they can be used to resolve the identity.

To establish this we need the result

∫ dz∗dz
2πi

e−z·z
∗
z∗nzm = δnmn! . (2.10)

It then follows that

1 =
∑
n

|n〉〈n| =
∫ ∏

k

dz∗kdzk
2πi

|z〉〈z| . (2.11)
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An almost identical computation gives the trace formula

TrÂ =
∫ ∏

k

dz∗kdzk
2πi

〈ηz|Â|z〉 . (2.12)

We have put in a sign factor η = ±1, because it turns out that for fermions the trace
formula is identical except for a minus sign. It is trivial to compute coherent state matrix
elements of operators Â = A(â†, â) that are in normal order. From the formula (2.5) and
its adjoint we immediately obtain:

〈w| : A(â†, â) : |z〉 = A(w∗, z)〈w|z〉 , (2.13)

where A(w∗, z) is a c-number function.

2.2 Field Theory

In field theory the discrete index k is replaced by the continuous coordinate x labeling
the space points. We consider the real scalar field

φ̂(x) =
∑
k

[
fk(x)âk + f

∗
k (x)â

†
k

]
, (2.14)

= φ̂(+)(x) + φ̂(−)(x) , (2.15)

which has been decomposed into positive and negative frequency parts. The coherent
state is the eigen state of the annihilation part:

φ̂(+)(x)|z〉 = z(x)|z〉 , (2.16)

with eigenvalue z(x) =
∑
k fk(x)zk. The norm generalizes to

N(z) = exp− 1
2

∫
d3x [iz∗(x)ż(x)− iż∗(x)z(x)] , (2.17)

where we used (1.27). This shows that this definition only makes sense if z(x), ż(x) are
in L2(R3), i.e. ∫

d3x z∗(x)ż(x) <∞ . (2.18)

Formally the discrete integration measure is replaced by a ”continuum product”

∏
k

dz∗kzk →
∏
x
dz(x)dz∗(x) ≡ Dz(x)Dz∗(x) (2.19)

over all space points x. In this way the trace formula (2.12) becomes

TrA =
∫
Dz(x)Dz∗(x)〈ηz|A |z〉 . (2.20)
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In general the interpretation of the functional integral is not easy. In this case, however,
the integration domain is restricted to functions z(x) in L2(R3), which enables us to give
a specific definition. Namely, there exits a countable basis {φi(x)}, so that any function
in L2(R3) can be written as

z(x) =
∑
i

ci φi(x) (2.21)

for certain ci. Since the φi’s are fixed, the freedom in the choice of z(x) resides in the
coefficients ci, so that the integration measure Dz(x)Dz∗(x) may be replaced by ∏ dcidc∗i ,
and we are back at the discrete situation handled before.

2.3 Path Integral

We begin by writing down the transition amplitude from a state |ϕi; ti〉 at time ti to the
state |ϕf ; tf〉 at time tf :

〈ϕf ; tf |ϕi; ti〉 = 〈ϕf | e−iĤ(tf−ti) |ϕi〉 . (2.22)

The matrix elements of the exponent cannot be calculated for finite time interval. Thus,
the idea is to partition the interval [ti, tf ] into M infinitesimal pieces ε = (tf − ti)/M , so
that we can write

〈ϕf ; tf |ϕi; ti〉 = 〈ϕf |
(
e−iεĤ

)M |ϕi〉 . (2.23)

We now insert the completeness relationM−1 times. Relabeling |χ0〉 = |ϕi〉, 〈χM | = 〈ϕf |
we get:

〈ϕf ; tf |ϕi; ti〉 =
∫ M−1∏
n=1

DχnDχ∗
n

M∏
n=1

〈χn|e−iεĤ |χn−1〉 . (2.24)

The crucial step is to find an approximate expression for the matrix element of the in-
finitesimal time-evolution operator. One may show that for small ε the operator may be
approximated by its normal ordered form [NO88]:

e−iεĤ =: e−iεĤ : +O(ε2) . (2.25)

With this approximation the typical matrix element becomes:

〈χn| e−iεĤ |χn−1〉 = 〈χn|χn−1〉 exp−iε 〈χn| Ĥ |χn−1〉 . (2.26)

The special properties of the coherent states allow us to calculate the matrix element

〈χn|Ĥ(â†, â)|χn−1〉 = H(χ∗
n, χn−1) , (2.27)

where H is now a function of the c-numbers χn and χ
∗
n. Collecting the above results we

may write for the transition amplitude

〈ϕf ; tf |ϕi; ti〉 =
∫ M−1∏
n=1

DχnDχ∗
n e
iS , (2.28)
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where the exponent, called the action, given by the expression

S = ε
M∑
n=1

[
log〈χn|χn−1〉

iε
−H(χ∗

n, χn−1)

]
, (2.29)

is a function of the sequence {χ} = (χ1, χ2, · · · , χM).
Let us now define a set of intermediate points tn = nε+ ti on the time interval [ti, tf ],

so that tM = tf and t0 = ti, and relabel: χn → χ(tn). Then in the limit M → ∞ the
sequence of numbers {χ} becomes a function: {χ} → χ(t) and the product of integrations
a functional measure

M−1∑
n=1

Dχn → Dχ(t) . (2.30)

Unfortunately, the formal expressions are almost meaningless. The reason is that the
space of all functions χ(t) is far too large to be tractable. We cannot assign a meaning to
Dχ(t) like we defined Dχ(x), because the functions χ(x) are elements of L2(R3), whereas
the functions χ(t) need not be measurable, let alone integrable. The functional integral
is only properly defined by the discrete (lattice) form for finite M .
Although we cannot assume continuity or differentiability of χ(t), we can be bold and

restrict the integration domain to a subspace of functions having ’good’ mathematical
properties. In particular we can demand that this subspace consists of differentiable
functions, that is, we assume

χn = χn−1 + χ̇nε+O(ε2) (2.31)

for some well defined sequence χ̇n which may be called the derivative of the sequence
{χn}. The limit function χ(t) will then be differentiable:

dχ

dt

∣∣∣∣∣
t=tn

= lim
χn − χn−1

ε
= χ̇n . (2.32)

If this holds we can expand the first term of the action (2.29) as follows:

−i log〈χn|χn−1〉 = 1
2
i
[
χ∗
n · (χn − χn−1)− (χ∗

n − χ∗
n−1) · χn−1

]
= 1

2
iε[χ∗

nχ̇n − χ̇∗
nχn] +O(ε2) . (2.33)

The action (2.29) in the Feynman path integral then takes the form of an action integral

lim
M→∞

S =
∫ tf
ti
dt L(t) ≡ S[χ∗, χ] , (2.34)

where L(t) is the Lagrangian

L(t) = 1
2
i [χ∗(t) · ∂tχ(t)− ∂tχ∗(t) · χ(t)]−H (χ∗(t), χ(t)) . (2.35)
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Thus, the transition amplitude (2.22) is the sum over all trajectories χ(t), beginning at
χ(ti,x) = ϕi(x) and ending at χ(tf ,x) = ϕf(x),

〈ϕf ; tf |ϕi; ti〉 =
∫
Dχ(t)Dχ∗(t) eiS[χ

∗,χ] , (2.36)

of the exponential of the action calculated over the finite time interval [ti, tf ].
In the above derivation we have suppressed the discrete index k of the functions χk.

Let us now define the following two real c-number functions on configuration space:

φ(x) = 〈χ|φ̂(x)|χ〉 =∑
k

[fk(x)χk + f
∗
k (x)χ

∗
k] , (2.37)

π(x) = 〈χ|π̂(x)|χ〉 =∑
k

[ḟk(x)χk + ḟ
∗
k (x)χ

∗
k] . (2.38)

Using the orthogonality relation (1.27), we may derive from these definitions the identity

1
2

∫
d3x[π(x)δφ(x)− φ(x)δπ(x)] = 1

2
i
∑
k

(χ∗
kδχk − χkδχ∗

k) (2.39)

treating χ and χ∗ as independent variables. After a partial integration we recognize in
the exponent of (2.36) the classical action

S =
∫ tf
ti
dt
∫
d3x[φ̇(x)π(x)−H(x)] . (2.40)

The final result is the general formula for computing transition amplitudes

〈ϕf ; tf |ϕi; ti〉 =
∫
DφDπ exp i

h̄

∫ tf
ti
dt
∫
d3x[φ̇(x)π(x)−H(x)] (2.41)

by means of a path integral. If we specialize to a bosonic scalar field field without deriva-
tive coupling, we may split off the Gaussian integralDπ over the momentum by completing
the square to obtain:

〈ϕf ; tf |ϕi; ti〉 =
∫
Dφ exp i

h̄

∫ tf
ti
dt
∫
d3xL(x) (2.42)

with the Lagrangian density

L = 1
2
φ(x)(−∂2 −m2)φ(x)− V(x) . (2.43)

The field φ(x) over which is integrated is constrained to the initial and final configurations
φ(ti,x) = ϕi(x) and φ(tf ,x) = ϕf(x), respectively.
Although the expression for the transition amplitude (2.42) has a great formal beauty,

we should not forget that it was derived by the rather arbitrary prescription that the
sequence χn approaches a differentiable function. Even with this prescription, the path
integral is mathematically ill defined. The point is that the subspace of smooth functions
is so exceedingly small in the total space of functions that it is impossible to find a measure
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Dφ that picks only contributions from these smooth functions. This is the paradox of
the continuum path integral: either one restricts it to smooth functions but then it is
identically zero or one allows more functions, but then the continuum action is undefined.
One way is to go back to the discrete form; this is the method of lattice field theories.
Another way is to normalize the formal path integral to an analytically solvable reference
problem. In practice this means that the Gaussian path integral for a free system is
prescribed.

2.4 Partition function

Let us now consider the partition function for a gas of neutral scalar bosons. We begin by
writing the trace in the partition function as a functional integral over a the state space
of real functions

Z(β, V ) =
∫
Dφ(x)〈φ(x)| exp

(
−βĤ

)
|φ(x)〉 . (2.44)

The Boltzmann factor may be regarded as the evolution operator that evolves the state
from t = 0 to the imaginary time t = −ih̄β. We may repeat the reasoning of the preceding
section, partitioning the interval [0, h̄β] into M infinitesimal pieces ε = h̄β/M . We define
a set of intermediate points τn = nε on the imaginary time interval [0, h̄β], so that τM = β
and τ0 = 0. Then in the limit M →∞, the partition function becomes a path intergral

Z =
∫
Dφ(τ,x) exp−1

h̄

∫ h̄β
0

dτLE [φ] . (2.45)

over the field φ(τ,x) defined on the Euclidean time inteval 0 ≤ τ ≤ h̄β. The fact that in
the trace the initial and final states are the same, requires the Euclidean field to satisfy
the periodic boundary condition:

φ(0,x) = φ(h̄β,x) (2.46)

at both ends of the imaginary-time interval. The Euclidean Lagrangian is related to the
classical Lagrangian density (2.86) in Minkowski space through

LE(τ) = −
∫
d3x L(−iτ,x) , (2.47)

with the time t analytically continued to −iτ .
In summary, the partition function (2.44) can be represented as an Euclidean func-

tional integral over fields φ(τ,x) defined on the time interval t = −iτ, 0 ≤ τ ≤ h̄β. The
path integration is subject to the periodicity condition (2.46).
The path integral (2.45) is defined up to an unspecified and ill-defined normalization

factor. However, for the calculation of thermodynamic functions this normalization factor
is irrelevant as we will now show for the example of the energy density

E = − 1
V

∂ logZ

∂β

=
1

V

〈
∂

∂h̄β

∫ h̄β
0

dτLE [φ]

〉
. (2.48)
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As we shall show, the term written out is indeed the energy density, implying that terms
coming from the β-dependence of the normalization constant and the integration measure
Dφ(τ,x) must cancel. To that purpose we write τ = h̄βλ, 0 ≤ λ ≤ 1. After replacing τ
by λ we easily calculate the β-derivative in (2.48). The result is

E =
1

h̄βV

∫ h̄β
0

dτ
∫
d3x

〈
(∂τφ)

2 − L
〉
. (2.49)

Since the equilibrium average does not depend on the space-time coordinates, we get

E = 〈H(x)〉 , (2.50)

where H is the Hamiltonian density of the system. We conclude that (2.45) is indeed a
valid representation for the canonical partition function.
We now consider partition function for the non-interacting case. Then, we have to

calculate the Gaussian path intgral

Z0 =
∫
Dφ exp− 1

2
φΛφ , (2.51)

where the exponent reads explicitly

1
2
φΛφ =

1

h̄

∫ h̄β
0

dτ
∫
d3xφ(τ,x)

(
−∂2τ −∇2 +m2

)
φ(τ,x) . (2.52)

For bosons the general formula for the Gaussian integral is∫
Dφ exp− 1

2
φΛφ = (det Λ)−

1
2 . (2.53)

We may use the identity det Λ = expTr log Λ, which is obvious for any matrix that can
be diagonalized. For the partition function this gives

logZ0 = − 1
2
Tr log Λ , (2.54)

where Λ is to be regarded as a matrix in an infinite dimensional function space labeled
by τ,x.
To get further it is convenient to introduce an expansion in plane-wave eigenfunctions

of the operator Λ

δ(τ − τ ′)δ(x− x′) =
1

h̄β

∑
n

∫
d3k

(2π)3
exp−iωn(τ − τ ′) exp ik · (x− x′) , (2.55)

where the Matsubara frequencies ωn = 2πnT/h̄ are determined by the periodic boundary
conditions on the boson field. The logarithm is defined by its series expansion in powers
of Λ. The first term is calculated as

TrΛ =
1

h̄

∫ h̄β
0

dτ
∫
d3xΛ δ(τ − τ ′)δ(x− x′)|τ=τ ′,x=x′

= βV Tr(ω2n + ω
2
k) , (2.56)
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where the argument is the inverse of the propagator (3.31) for bosons at temperature T .
The trace in the last line of (2.56) must be understood as

Tr ≡ 1

h̄β

∑
n

∫
d3k

(2π)3
. (2.57)

Similarly we get for the quadratic term

TrΛ2 = βV Tr(ω2n + ω
2
k)
2 (2.58)

and so forth. As it should be, the logarithm of the partition function is an extensive
quantity proportional to the volume. The thermodynamic potential is therefore given by

Ω = 1
2
β Tr log(ω2n + ω

2
k) . (2.59)

One may note that the sum over n is divergent; moreover the dimension of the right-hand
side is not correct. This is the result of not properly taking into account the normalization
factor. Nevertheless, the final answer will come out all right.
The summation over the Matsubara frequencies can be performed by contour integra-

tion. However, it is simpler to differentiate with respect to the mass

1

2m

∂Ω

∂m
= 1

2
β Tr

1

ω2n + ω
2
k

(2.60)

because we can then use the summation formula (1.69).

Problem 2.1

Integrate the above formula with respect to m and rederive the expression for the
thermodynamic potential (1.45) for an ideal gas of bosons.

2.5 Dirac Field

A similar derivation of the path integral can be given for fermionic fields. Because fermi-
onic fields anti-commute, it turns out to be necessary to replace the complex numbers z, z∗

by new quantities, called Grassman variables, that satisfy different calculational rules. In
particular they anti-commute among themselves, and commute with all bosonic quanti-
ties, like bosonic operators and ordinary c-numbers. The point of these rules is that the
whole coherent state formalism, including the derivation of the path integral, can be taken
over almost literally. The only essential difference is that, on account of the minus sign in
the trace formula (2.20), the boundary condition on fermionic fields in the path integral
is anti-periodic: ψ(h̄β,x) = −ψ(0,x).
We shall now write down the path integral representation for the partition function

Z = Tre−β(Ĥ−µQ̂) (2.61)
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for a system of free Dirac particles with Hamiltonian

Ĥ =
∫
d3xψ̂†(x)γ0(−iγ · ∇+m)ψ̂(x) (2.62)

and charge

Q̂ =
∫
d3x ψ̂†(x)γ0ψ̂(x) . (2.63)

The charge is conserved and satisfies the commutation relations:[
Q̂, ψ̂(x)

]
= −ψ̂(x),

[
Q̂, ψ̂†(x)γ0

]
= ψ̂†(x)γ0 . (2.64)

We replace the operator fields ψ̂α(x) by Grassman variables ψα(τ,x) defined on the
Euclidean time interval, t = −iτ, 0 ≤ τ ≤ β, and construct the corresponding Euclidean
action

Z =
∫
Dψ∗Dψ exp−

∫ β
0
dτ
[∫

d3xψ∗
α(∂τ − µ)ψα +H(ψ∗, ψ)

]
. (2.65)

The functional integration over the Grassman variables is subject to the anti-periodicity
conditions:

ψ∗
α(0,x) = −ψ∗

α(β,x), ψα(0,x) = −ψα(β,x) (2.66)

We deduce that the thermal propagator is given by

S(τ − τ ′,x− x′) = 〈ψ(τ,x)ψ̄(τ ′,x′)〉0 (2.67)

and obeys the partial differential equation

[γ0(∂τ − µ)− iγ · ∇+m)S(τ − τ ′,x− x′) = δ(τ − τ ′)δ(x− x′) . (2.68)

Problem 2.2

Show that the solution of this equation in momentum space is the Matsubara popa-
gator for fermions

S̃(k) = (γ · k +m)D̃(k) , (2.69)

where the energy has the discrete values k0 = iωn − µ, ωn = π(2n+ 1)T .

The basic Gaussian integration formula for a Grassman field is∫
Dψ∗Dψ exp−ψ∗Λψ) = det Λ . (2.70)

With det Λ = expTr log Λ, we get for the partition function of the free fermion gas

logZ0 = TrΛ = Tr log[(∂τ − µ)− iγ0γ · ∇+ γ0m] . (2.71)

The trace operation is to be carried out both over the Dirac indices and in momentum
-frequency space.
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Problem 2.3

Calculate the trace to obtain

Ω = −∑
n

∫
d3k

(2π)3

{
log[ω2n + (ωk − µ)2] + log[ω2n + (ωk + µ)2]

}
(2.72)

for the thermodynamic potential.

We may now use a summation formula analogous to (1.69), which can easily be derived
from the basic thermal propagator (1.88), to obtain the thermodynamic potential of a
Fermi gas

Ω = −2
∫

d3k

(2π)3

{
log[1 + e−β(ωk−µ)] + log[1 + e−β(ωk+µ)] + βωk

}
. (2.73)

It has an overall factor two owing to the two spin states.

2.6 Generating functional

We consider again a scalar Bose field φ̂(x) carrying no conserved charges. Thermal Green
functions are defined as expectation values of time-ordered fields in the Heisenberg picture:

G(x1, . . . , xN) = 〈 T φ̂(x1) . . . φ̂(xN ) 〉
=

1

Z

∫
Dϕ(x)〈ϕ(x); ti| e−βĤT φ̂(x1) . . . φ̂(xN)|ϕ(x); ti〉 . (2.74)

The trace is over a complete set of coherent states at some arbitrary initial time ti. By
a spectral analysis it may be shown that thermal Green functions exist as an analytic
function of their time-variables t1, . . . , tN as long as the imaginary parts of the time
differences satisfy

−β < Im(ti − tj) < 0 , (2.75)

with ti the larger and tj the smaller time. Basically the argument is that the Boltzmann
factor in the thermal average ensures convergence of the trace.
It is convenient to collect all Green functions in the generating functional

Z[j] =
∫
Dϕ(x)〈ϕ(x); ti| e−βĤ T exp i

∫
d4x j(x)φ̂(x) |ϕ(x); ti〉 , (2.76)

where j(x) is a c-number source. The individual Green functions are recovered by ex-
panding out the generating functional. The first term is the canonical partition function

Z[0] =
∫
Dϕ(x)〈ϕ(x); ti| e−βĤ |ϕ(x); ti〉 . (2.77)
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Higher-order Green functions are obtained by repeated functional differentiation with
respect to the source:

〈 T φ̂(x1)φ̂(x2) . . . φ̂(xN) 〉 = 1

Z[0]

δNZ[j]

iδj(x1) . . . iδj(xN )

∣∣∣∣∣
j=0

. (2.78)

When calculating these N -point thermal Green functions, one finds that in general they
consist of various connected pieces, that is, sub-units that have the cluster property,
namely

lim
|xi−xj |→∞

Gcon(x1, x2, . . . , xN ) = 0 (2.79)

for any two arguments xi, xj . That is, the connected pieces fall off to zero when the
distance between the field points increases. Connected N -point Green functions, for
which we use the notation G(N) in the following, are obtained from the logarithm of the
generating functional

G(N)(x1, x2, . . . , xn) =
δN logZ[j]

iδj(x1) . . . iδj(xN )

∣∣∣∣∣
j=0

. (2.80)

The expansion of the new generating functional W [j] = logZ[j] in terms of connected
Green functions

W [j] = logZ[0] +
∞∑
N=1

iN

N !

∫
d4x1 . . . d

4xNG
(N)(x1, . . . , xN )j(x1) . . . j(xN ) . (2.81)

is usually called the cumulant expansion in statistical mechanics. The first few connected
Green functions read:

G(1)(x) = 〈φ̂(x)〉 (2.82)

G(2)(x1, x2) = 〈 T φ̂(x1)φ̂(x2) 〉 − 〈 φ̂(x1) 〉〈 φ̂(x2) 〉 . (2.83)

Higher-order expressions may be found in [?]. It is preferable to work with connected
Green functions; not only are they diagrammatically simpler objects, but also they have
the cluster property (2.79).

Problem 2.4

Show that for translationally invariant systems, thermal Green functions G(N)(x1, . . . , xN)
effectively only depend on N − 1 relative coordinates.

We now recall the general formula (2.42) that expresses transition amplitudes in terms of
a path integral. The derivation is easily generalized to matrix elements of a product of
time-ordered fields with time-arguments in the time-interval [ti, tf ]. This generalization
leads to the Feynman-Matthews-Salam (FMS) formula

〈ϕf ; tf | T φ̂(x1) . . . φ̂(xN ) |ϕi; ti〉 =
∫
Dφ φ(x1) . . . φ(xN) eiS (2.84)
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with action

S =
∫ tf
ti
dt
∫
d3xL(x) (2.85)

in terms of the Lagrangian density

L = 1
2
φ(x)(−∂2 −m2)φ(x)− V(x) . (2.86)

The path integration is over all c-number fields φ(x) constrained to the initial and final
configurations φ(ti,x) = ϕi(x) and φ(tf ,x) = ϕf (x), respectively. The time-arguments
t1, . . . , tN must all lie in the interval [ti, tf ].
For the application of the FMS-formula to thermal field theory, it is crucial to under-

stand that the result (2.84) retains its validity if we allow the times to be complex. More
precisely, let C be some oriented contour t = z(τ) in the complex time plane beginning
at ti and ending at tf , with the parameter τ real and monotonically increasing; and let
TC be an ordering instruction that rearranges operators in the Heisenberg picture in the
order in which their arguments lie along the oriented contour C, the later times to the
left. (Note that on the real-time axis TC-ordering amounts to ordinary time ordering
with respect to τ .) The only restriction is that the contour C must go monotonically
downward, as expressed by the inequality (2.75). Since the limit of an analytic func-
tion on the boundary of its domain of definition, where it is still continuous, exists as a
generalized function, in the limit case the contour may be parallel the real axis. Hence,
the imaginary part of a point moving along the contour C must be non-increasing. Of
course, for the FMS-formula (2.84) to be valid, the time arguments of the fields must all
lie on the contour C. To see that this reasoning is viable it suffices to point out that any
contour allows a decomposition into pieces, each parameterized by a real parameter, such
that contour ordering coincides with ordinary time-ordering in this real parameter. The
original FMS-formula can than be applied piecewise.
Let us now return to the generating functional (2.76). The action of the canonical

operator may be translated into an imaginary time shift

〈ϕ(x); ti| e−βĤ = 〈ϕ(x); ti − iβ| . (2.87)

Hence, to be able to apply the FMS-formula, we have to consider a contour C in the
complex time plane which starts at ti and ends at tf = ti − iβ. If the time-arguments of
the fields lie on the real axis, the contour has to include these as well. The FMS-formula
allows us then to write the generating functional as the path integral

Z[j] =
∫
Dφ exp i

∫
C

d4x[L(x) + j(x)φ(x)] , (2.88)

where the path integration is over all c-number fields φ(x) which have to satisfy the
periodic boundary condition

φ(ti − iβ,x) = φ(ti,x) , (2.89)

because the trace in the thermal average demands that the fields at the begin and end
points are the same.
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Chapter 3

Imaginary-Time Formalism

Amajor part of the applications of Thermal Field Theory relies on some version of thermal
perturbation theory or other. Still the most popular is the imaginary-time (Euclidean)
formalism (ITFT). The formalism was developed by many authors , but is usually named
after Matsubara (1953), who was the first top set up a diagrammatic perturbation theory
for the grand partition function on a field theoretic basis. The major advantage of ITFT
is that in Fourier language the Feynman rules are very similar to those of the vacuum
theory, except that the energies in the propagators are discrete and imaginary. The Green
functions of the theory are defined at these Matsubara frequencies, which constitute a
discrete set of points on the imaginary axis of the complex energy plane. The formalism is
well suited to the evaluation of static thermodynamic properties, e.g. the thermodynamic
potential. Dynamical problems, on the other hand, necessitate an analytic extension of
the Matsubara Green functions to the real axis, owing to the unphysical representation
of energy and time. This is the basic disadvantage of the Matsubara formalism.

3.1 Wick’s Theorem

As explained in the preceding chapter, in the path integral of thermal field theory the
time integrations have to performed along a contour from some arbitrary time ti down to
ti − iβ. In this chapter we confine ourselves to a time-contour that runs straight down
the imaginary time axis t = −iτ, 0 ≤ τ ≤ β, with all time arguments of the fields on
this imaginary time contour; we write φ(τ,x) ≡ φ(−iτ,x). On this Euclidean contour the
action in the path integral (5.6) becomes the Euclidean action

i
∫
C

d4xL(x) = −
∫ β
0
dτ
∫
d3x LE(x) ≡ −SE . (3.1)

From (2.86) we obtain the Euclidean Lagrangian density

LE(τ,x) = 1
2
φ(τ,x)

(
−∂2τ −∇2 +m2

)
φ(τ,x) + V(φ) . (3.2)
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The interaction term is arbitrary, except that it can not contain derivative interactions,
i.e., it can not depend on derivatives of φ. With these specifications the generating
functional (5.6) on the Euclidean contour takes the form

Z[j] =
∫
Dφ exp(−SE + jφ) , (3.3)

where we used the shorthand notation

jφ =
∫ β
0
dτ
∫
d3x j(τ,x)φ(τ,x) . (3.4)

One may note this is very similar to the generating functional of a T = 0 field theory
in Euclidean space, except that the integration over the Euclidean time variable τ would
then run over the range (−∞,∞).
We proceed by considering the generating functional for the free case with V = 0.

With the same notation as in formula (3.8) we write

Z0[j] =
∫
Dφ exp− 1

2
φΛφ+ jφ , (3.5)

where Λ = −∂2τ −∇2 +m2 is the differential operator determined by the quadratic part
of the Lagrangian. The integration over the field is Gaussian and can be performed by
transcribing formula (6.106) to the continuum case

Z0[j] = Z0[0] exp 1
2
jΛ−1j . (3.6)

The inverse of the differential operator Λ is the propagator defined through the Green
function equation

(−∂2τ −∇2 +m2)∆(τ − τ ′,x− x′) = δ(τ − τ ′)δ(x− x′) . (3.7)

A unique solution is obtained by prescribing the appropriate boundary condition which
in this case is that the propagator must be periodic on the time interval 0 ≤ τ ≤ β. This
implies that the solution is the thermal propagator for imaginary time (1.60) as defined
in chapter 1. Hence, for the generating functional we get:

Z0[j] = Z0[0] exp 1
2

∫ β
0
dτdτ ′

∫
d3xd3x′ j(τ,x)∆(τ − τ ′,x− x′)j(τ ′,x′) , (3.8)

with the free partition function as calculated in chapter 2. The correspondence with the
vacuum theory is easily memorized through the transcription rules

i
∫
dt →

∫ β
0
dτ (3.9)

iDF (x) → ∆(τ,x) (3.10)

with the Feynman propagator DF (x) as defined in (1.57).
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The implication of (3.8) is that the free generating functional may be expanded entirely
into products of the thermal propagator ∆(τ,x). This is called the thermodynamic Wick
theorem. In particular, differentiating twice with respect to the source and setting j = 0
afterwards we obtain the basic expectation value of two free fields with time arguments
on the imaginary time contour:

〈φ(τ,x)φ(0)〉0 = ∆(τ,x)

=
1

β

∞∑
n=−∞

∫
d3k

(2π)3
eik·x−iωnτ

ω2n + ω
2
k

. (3.11)

This may be generalized to any thermal average of an even number of fields which may
be reduced to a sum of products of propagators

〈φ(x1) . . . φ(xl)〉0 =
∑

pairings of

(k1,...,kl)

∆(xk1 − xk2) . . .∆(xkl−1
− xkl

) , (3.12)

where x = (τ,x). The sum runs over all possible ways of choosing coordinate pairs. In
field theory this procedure is often referred to as ”contracting” the coordinate pairs. Each
contraction is represented by a propagator at the right hand side of (3.12).

3.2 Perturbation expansion

The path-integral representation for the generating functional generates perturbative ex-
pansions by the following algorithm. First we split the Euclidean action into a quadratic
part and a remainder: SE = S0 + SI . For the example of a λφ

4-theory these two pieces
have the form:

S0[φ] = 1
2

∫ β
0
dτ
∫
d3x φ(x)(−∂2τ −∇2 +m2)φ(x) , (3.13)

SI [φ] =
λ

4!

∫ β
0
dτ
∫
d3x φ(x)4 , (3.14)

where λ is the coupling constant. Since the action as defined here is dimensionless, [SE] =
0, the field, mass and coupling constant have the dimensions: [φ] = 1, [m] = 2, [λ] = 0,
with scale -1 attributed to the length scale L.
Wick’s theorem allows the systematic calculation of any thermal Green function deriv-

able from the generating functional (6.15) which we write as

Z[j] =
∫
Dφ e−S0[φ]e−SI [φ]+jφ . (3.15)

This expression may be regarded as a statistical average of the second exponential factor
with statistical weight exp−S0[φ]. By expanding out the second exponent one gets

Z[j] = Z0[0]{1 + 〈−SI + jφ〉0 + 1
2
〈(−SI + jφ)2〉0 + . . .} . (3.16)

Any two fields are contracted and replaced by the propagator (3.11). It proves to be
extremely convenient to introduce a graphical notation:
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(i) a contraction is represented by a line joining the two arguments

〈φ(x)φ(y)〉0 = ∆(x− y) = (3.17)

(ii) the four-interaction is represented by a four-point vertex

−λφ(z)4 = (3.18)

(iii) an external source attached to a field φ(x) is marked by a cross:

j(x) = −−−−−× (3.19)

(iv) all vertex- and source coordinates are integrated over:
∫
dτ
∫
d3x

In this manner any term in the Wick expansion of (3.16) can be represented by a unique
Feynman diagram. For example

〈SI〉0 =
λ

4!

∫ β
0
dτ
∫
d3x〈φ(x)4〉0 = λ

8

∫ β
0
dτ
∫
d3x [∆(0)]2

= . (3.20)

Such a diagram without external point is called a closed or bubble diagram. Closed graphs
are not connected to a source and do not contribute to correlation functions. The sum of
all closed diagrams equals the partition function:

Z[0] = Z0[0]
∞∑
n=0

(−λ)n
n!

〈(SI)n〉0 , (3.21)

where we have extracted the coupling constant from the action to exhibit the order of the
terms in the perturbation series. Hence, what actually has to be computed at order λn is

〈(SI)n〉0 =
∫ Dφe−S0(SI)

n∫ Dφe−S0
, (3.22)

which is the value of SI raised to an arbitrary power and averaged over the unperturbed
ensemble represented by S0. The ill-defined normalization of the integrals is irrelevant
because we only need their ratio.
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In the preceding chapter we already introduced the notion of a cumulant expansion.
In the present case cumulants may be formally defined by writing:

Z[0] = Z0[0] exp
∞∑
n=1

(−λ)n
n!

〈(SI)n〉con . (3.23)

The cumulants may be identified by expanding out both (3.21) and (3.23) with respect
to the coupling constant, and identifying terms of equal power. By working out a few
examples it becomes clear that the cumulant construction is such that all disconnected
pieces from any term 〈(SI)n〉0 are subtracted, leaving only terms that are represented
by connected diagrams. Hence we may write for the logarithm of the partition function
(3.21), which is the quantity of physical interest in statistical mechanics:

logZ[0] = logZ0[0] + 〈e−λSI − 1〉con , (3.24)

where the last term stands for the sum of all connected closed diagrams.
The cumulants represented by closed linked diagrams have two very important char-

acteristic properties, namely:
• they have the cluster property, and
• they are extensive, that is, they are proportional to the volume of the system.
The last property follows immediately from Wick’s theorem (3.12). Since the propa-

gators only depend on the coordinate differences, in terms represented by a closed linked
diagram, one of the coordinates is redundant and the final integration will yield a fac-
tor βV . Every disconnected closed piece of a diagram, that is, every piece that is not
connected to an external point will yield such a factor.
Recalling now the basic statistical mechanical formula for the pressure P = logZ/βV ,

we see that we have derived a general diagram technique for evaluating the interaction
part PI = P − P0 of the pressure

PI =
1

βV
log

Z[0]

Z0[0]
=

1

βV

∑
closed linked diagrams . (3.25)

This expression remains finite in the thermodynamic limit, as a consequence of the trans-
lational invariance of the underlying field theory.

Problem 3.1

Draw the first- and second-order diagrams contributing to the thermodynamic pres-
sure.

We carry on with the full generating functional. Since the coupling of the external source
to the field is just another type of vertex, we may follow the same reasoning and write

logZ[j] = logZ0[0] + 〈e−λSI+jφ − 1〉con ,
= logZ[0] + 〈e−λSI (ejφ − 1)〉con , (3.26)
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where the last term at the right-hand side is the sum of all connected diagrams with one
or more external points. For example, for the 2-point thermal Green function we have
the expression:

G(2)(x, y) = 〈e−λSIφ(x)φ(y)〉con . (3.27)

Working out the terms with Wick’s theorem, we find each term in the perturbative ex-
pansion as a product of propagators ∆(xi − xj), represented by a connected Feynman
diagram.

Problem 3.2

Consider (3.27) and write down the perturbative expansion to order λ with the cor-
rect numerical symmetry factor.

The only factor that is not completely obvious is the multiplicative numerical factor,
called the symmetry factor that we have to assign to each diagram. The symmetry factor
is obtained in a straightforward, but tedious, manner by counting the number of ways in
which a diagram can be constructed by connecting the vertices with the same topological
result. Let the diagram consist of V vertices and the corresponding symmetry factor be
SV . In the perturbation expansion (3.20) it is seen that this symmetry factor has to be
divided by the permutational factor of each vertex: (4!)V , and by the permutation of the
identical vertices: V !. In total we get the weight factor:

gV =
SV

(4!)V V !
. (3.28)

Since the details of counting diagrams is treated in many textbooks, e.g. [PS95], we will
not pursue this here.

3.3 Feynman rules

In the imaginary-time formalism, the Feynman rules take their simplest form in momen-
tum space. In virtue of the periodicity conditions, the time dependence of all fields may
be represented by a Fourier sum over discrete frequencies. In general we write:

f(x) =
1

β

∑
n

∫
d3k

(2π)3
exp(−ik · x)f̃(k) (3.29)

where x0 = −iτ and k0 takes on the discrete values k0 = i2nπβ−1 + µ or k0 = i(2n +
1)πβ−1 + µ, depending on the periodicity properties of the field f(x). In terms of the
Fourier transformed fields the action becomes:

i
∫ −iβ

0
d4xL(x) = − 1

2β

∑
n

∫
d3k

(2π)3
φ̃(−k)∆̃−1(k)φ̃(k) + SI [φ̃] . (3.30)
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Here

∆̃(k) =
1

m2 − k2 =
1

ω2n + ω
2
k

(3.31)

is the thermal (Matsubara) propagator and

SI [φ̃] = − λ
4!

4∏
i=1

1

β

∑
ni

∫ d3ki
(2π)3

φ̃(ki)β(2π)
3δn,0δ(k) , (3.32)

with k =
∑
i ki and n =

∑
i ni. On account of the locality of the interaction, energy and

momentum are conserved at each vertex.
The Fourier transformed Green functions

G̃(N)(k1, . . . , kN) = 〈φ̃(k1) . . . φ̃(kN)〉 (3.33)

are generated by functional differentiation of the generating functional

Z[j̃] = Z0[0]〈 e−SI [φ̃]+j̃φ̃ 〉0 . (3.34)

Because of translational invariance, energy and momentum are globally conserved and
these Green functions are proportional to the factor β(2π)3δn,0δ(k). The delta-function
appears as a consequence of us taking the continuum limit in momentum space. In the
thermodynamic limit we formally have βV → (2π)3δ(0).

Problem 3.3

Show that the free 2-point function is given by

〈φ̃(k1)φ̃(k2)〉0 = β(2π)3∆̃(k1)δn1n2δ(k1 − k2) (3.35)

with (3.31) on account of translational invariance.

The Feynman rules may now be stated as follows:
(i) Draw diagrams and determine symmetry factors as in vacuum field theory.

(ii) Assign a propagator ∆̃(k) to each line and a factor −λ to each vertex.
(iii) Conserve energy and momentum at each vertex according to the prescription:

β(2π)3δn,0δ(k); global energy and momentum conservation may be separated off by
excluding one arbitrarily chosen vertex; this amounts to the omission of an overall
factor β(2π)3δ(0) = βV .

(iv) Integrate and sum over all internal momenta and energies according to β−1∑∫
d3k/(2π)3.

By comparison with the Feynman rules of the vacuum theory [PS95], it is seen that
the thermal Green functions may be obtained by making the following substitutions in
the Minkowski-space Feynman integrals:

G̃(k1, . . . , kN) → (−i)N G̃E(k1, . . . , kN) , (3.36)∫
d4k

(2π)4i
→ β−1∑

n

∫
d3k

(2π)3
, (3.37)

i(2π)4δ(k) → β(2π)3δn,0δ(k) . (3.38)

37



The first prescription takes care of a factor of (−i) for each external propagator and the
last prescription ensures that effectively at each vertex a factor i disappears.
The same substitution rules apply in more complicated cases such as a SU(N) gauge

theory with fermions. The first two substitution rules together imply that propagators
loose a factor (−i). It follows that for spin- 1

2
fields the propagator becomes

S̃(k) =
1

m− γ · k (3.39)

and that for (covariant) gauge and ghost fields the Matsubara propagators are

D̃abµν(k) = δab
[
gµν
k2

− (1− λ−1)kµkν
k4

]
, (3.40)

D̃abg (k) =
δab

k2
. (3.41)

These expressions are the Fourier transforms of the corresponding Euclidean propagators.
Because of the periodic boundary conditions, discussed in the preceding chapter, the
Matsubara frequencies of the ghost propagator are even, like those of the gauge boson
propagator.
In actual calculations the above rules are supplemented with the usual prescriptions

such as a minus sign for every fermion loop and ghost loop. Moreover, one may take over
the renormalization prescriptions of the vacuum theory to eliminate all ultraviolet (UV)
divergencies of the corresponding thermal field theory. On the basis of the Feynman rules
stated above, it is possible to prove that thermal Green functions are UV-finite if the the-
ory has been renormalized at zero temperature. This general result, that extends to any
field theory, could have been expected on physical grounds. Indeed, the UV-divergences
arise from the singular short-distance behavior of the theory, which is quite unaffected
by the presence of a heath bath. In other words, in the UV limit the temperature and
the chemical potential can effectively treated as being zero. This can already been seen
from the form of the real-time propagator (1.59) because the vacuum part is neatly sepa-
rated from the thermal part and the thermodynamic parameters enter only through the
distribution function. This true for any field theory, as can been seen from the general
structure of the propagator (1.58). In the Matsubara formalism this feature is less obvi-
ous, although it is implied by the representation (1.63). Nevertheless the same theorem
has been proved. In practice, a convenient way of regulating the perturbation theory is
to continue dimensionally as in the vacuum theory.
Although it is sufficient to renormalize the theory at T = 0, µ = 0 in order to have

a finite theory at any T, µ, it may be physically convenient to choose a renormalization
prescription at a given T, µ �= 0. The renormalized masses and coupling then become T, µ
dependent. Because the renormalized theory is finite at any T, µ, quantities renormalized
at different renormalization point differ by a finite renormalization. Indeed the whole
machinery of the renormalization group can be extended to thermal field theory.
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3.4 Thermal mass

Let us consider as an elementary, but important, example of a perturbative calculation,
the 2-point thermal Green function

〈e−SI φ̃(k)φ̃(−k)〉con = G̃(2)(k)β(2π)3δ(0) , (3.42)

where we extracted the overall factor βV . Expanding to first order we get

G̃(2)(k) = ∆̃(k)− 1
2
∆̃(k)Π∆̃(k) , (3.43)

with the first-order self-energy given by the one-loop tadpole diagram

Π =

= 1
2
λ∆(x = 0) = 1

2
λT

∑
n

∫ d3k

(2π)3
1

ω2n + ω
2
k

. (3.44)

To first order in λ we find that Π is independent of the external momentum k. With the
summation formula (1.69) we obtain:

Π = 1
2
λ
∫

d3k

(2π)3
1

2ωk
[1 + 2n(ωk)] . (3.45)

The T = 0 part of the self energy is the vacuum contribution which is quadratically
UV-divergent. It may be renormalized as at zero temperature by adding a temperature
independent counter term to the Lagrangian. In dimensional regularization the tadpole
at T = 0 vanishes and may be ignored completely.
The remainder is a convergent integral

Π =
λ

(2π)2

∫ ∞

0
dk
k2

ωk
n(ωk) . (3.46)

This result is referred to as the thermal mass. Indeed, in general the self energy is defined
through the relation

[G̃(2)(k)]−1 = [∆̃(k)]−1 + Π̃(k) . (3.47)

To first order in λ we infer from (3.43) that Π̃(k) is given by expression (3.45). To this
order, Π can be interpreted as a simple correction to the mass squared:

[G̃(2)(k)]−1 = ω2n + k2 +m2 +Π . (3.48)

The thermal mass may be analytically evaluated for m = 0 using the formula (6.91)
which yields the simple result

Π =
λ

(2π)2
T 2
∫ ∞

0
dx

x

ex − 1 =
λT 2

24
. (3.49)
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This thermal mass is the effective mass that particles acquire through their continuous
interaction with the heat bath. It is one of the most important results of thermal field the-
ory. For finite mass m� T some further analytic results may be obtained by considering
the asymptotic expansion in u = βm of the integral

L2ν(u) =
1

(2ν − 1)!
∫ ∞

u
dx(x2 − u2)ν− 1

2 [1 + 2n(x)] . (3.50)

Two useful instances of this high-temperature expansion are:

L2(u) = 1
3
π2 − πu− 1

2
u2 log u+O(u2) , (3.51)

L4(u) = 1
45
π4 − 1

12
π2u2 + 1

6
πu3 +O(u4) . (3.52)

The first one gives the asymptotic result

Π =
1

24
λT 2

[
1− 3

π

m

T
− 3

2π2
log

m

T
+ . . .

]
, (3.53)

with the leading term proportional to the temperature squared and the sub-leading term
of order m/T .
The next contribution in λ to the thermal mass is actually divergent when m = 0.

This is an IR-divergence that has nothing to do with the UV divergences of the theory
at T = 0. This new divergence at T �= 0 is due to the fact that the boson develops
a dynamically generated thermal mass of order gT (for notational convenience we write
g2 = λ/24). The problem arises because we expand in terms of a propagator that has
zero mass to begin with. For example consider the 2-loop diagram

Π2 = . (3.54)

It is easy to show that the dominant IR-divergence of this diagram is

Π2 ∼ g4T 3
∫
dk

k2
. (3.55)

The divergence becomes more severe at each succeeding order.

Problem 3.4

Show that at order λN the dominant IR-divergent diagram is a daisy diagram con-
sisting of one-loop with N − 1 self energy insertions g2T 2.
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Figure 3.1: Daisy diagrams

This means that we cannot limit ourselves to naive perturbation theory, but must use
a resummation. A further analysis shows that the symmetry factors are such that the
insertion of a thermal mass can be done iteratively on all internal lines. All these daisy
diagrams can be resummed into the self-consistent gap equation

M2
β =

1
2
λT

∑
n

∫ d3k

(2π)3
1

ω2n + k2 +M2
β

. (3.56)

In other words, we replace the massless propagator by one in which already a thermal
mass Mβ occurs. With the help of (3.50) this equation may be expressed as

u2 =
λ

8π2
L2(u) . (3.57)

The expansion in powers of λ is obtained from the asymptotic result (3.51)

u2 = g2 − 3

π
g2u , (3.58)

from which we deduce:

M2
β = g

2T 2
[
1− 3

π
g + . . .

]
. (3.59)

We see that the next term in M2
β is not of order g

4 as we would expect from naive
perturbation theory, but instead of order g3, that is, a non-perturbative correction. This
reflects the breakdown of naive perturbation theory due to IR-divergences. Fortunately,
the correction is small if the coupling constant g is small. This seems to imply that
perturbation theory is reliable despite the IR-divergences, provided that leading terms
are obtained with an effective propagator which includes the thermal mass (3.49). This
mass can become rather large for high temperatures and the perturbation theory in terms
of the zero-temperature mass breaks down.
The same feature also appears in the perturbative expansion of the partition func-

tion (2.59) when we include a thermal mass. Let us evaluate the partition function by
separating off the massless part

Ω = 1
2

∑
n

∫
d3k

(2π)3

[
log(ω2n + k2) + log

(
1 +

M2
β

ω2n + k2

)]

= Ω0 + Ωex + Ωring . (3.60)
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Figure 3.2: Photon self energy

The first term corresponds to a free massless Bose gas, and the third term is the so called
ring contribution

Ωring = 1
2

∑
n

∫
d3k

(2π)3

[
log

(
1 +

M2
β

ω2n + k2

)
− M2

β

ω2n + k2

]
. (3.61)

The subtracted term is the so-called exchange term Ωex which corresponds to the lowest
order term (3.20). This term is subtracted because it is IR-finite. On the other hand, the
ring term can be seen as a resummation of the IR-divergences that come from the static
mode n = 0. In contrast, for n �= 0 the Matsubara frequencies 2πnT act as a mass in the
propagator and provide a cutoff in the momentum integrals. If one restricts oneself to the
n = 0 term in Ωring, the integral is easily evaluated after an integration by parts on the
logarithm.

Problem 3.5

Evaluate Ωring for n = 0 to obtain the leading order

Ωring � −g
3T 3

12π
(3.62)

showing that the IR divergences lead to a g3 dependence in the coupling constant.

3.5 Photon self energy

The self energy of a gauge boson in the one-loop approximation is an important example
for the application of perturbation theory at finite temperature. For simplicity we first
treat the photon self energy. We consider a thermal system of relativistic electrons,
positrons, and photons with a net charge zero, i.e. with a vanishing chemical potential.
The transversality of the polarization tensor pµΠ

µν(p), implies that only two components
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are independent, for which we choose the longitudinal and the transverse components

ΠL(p) = Π00 , (3.63)

ΠT (p) = 1
2

(
δij − pipj

p2

)
Πij(p) . (3.64)

The starting point is the one-loop expression as it follows from the finite temperature
Feynman rules

Πµν(p) = −e2T
∑
n

∫
d3k

(2π)3
tr[γµS̃(k − p)γνS̃(k)] . (3.65)

Since the loop consists of fermion lines, the propagator is the Dirac-propagator S̃(k) =
(γ · k + m)∆̃(k), with k0 = i(2n + 1)πT discrete odd Matsubara frequencies; the rules
include a minus sign for the loop. The trace over the γ-matrices gives

tr [γµ q · γ γν k · γ] = 4 [qµ kν + kµ qν − gµν (q · k)] , (3.66)

with the abbreviation q = p−k. Restricting ourselves to the longitudinal component and
making use of the mixed representation for the fermionic Matsubara propagator

∆(τ,k) =
∑
s=±1

s

2ωk
[1− nF (sωk)] e−sτωk , (3.67)

we find

ΠL(p) = −4e2T
∫

d3k

(2π)3
∑
k0

(k0q0 + k · q)
∫ β
0
dτdτ ′ek0τ+q0τ

′
∆(τ,k)∆(τ ′,q) , (3.68)

where we neglected the fermion mass: T � me.
In order to evaluate the sum over k0, we replace the term proportional to k0q0 by

derivatives with respect to τ, τ ′ and integrate by parts:

ΠL(p) = −4e2T
∫ d3k

(2π)3
∑
k0

∫ β
0
dτdτ ′ek0(τ−τ

′)ep0τ
′

×
[
d∆(τ,k)

dτ

d∆(τ ′,q)
dτ ′

+ k · q∆(τ,k)∆(τ ′,q)
]
. (3.69)

We may perform the sum over k0 with the help of the identity

T
∞∑

n=−∞
eiωn(τ−τ ′) = δ(τ − τ ′) (3.70)

and integrate over τ ′ afterwards. We then get:

ΠL(p) = −e2
∫

d3k

(2π)3

∫ β
0
dτep0τ

× ∑
r,s

[
1 + rs

k · q
ωkωq

]
nF (sωk)nF (rωq) e

τ(sωk+rωq) . (3.71)

43



In this expression the external energy is still imaginary with discrete values p0 = i2nT
as the photon is a boson, and all other energies real. The final integration over τ can be
performed and yields

∫ β
0
dτeτ(p0+sωk+rωq) =

eβ(sωk+rωq) − 1
p0 + sωk + rωq

. (3.72)

Then the result is

ΠL(p) = −e2
∫

d3k

(2π)3
∑
r,s

[
1 + rs

k · q
ωkωq

]

× nF (sωk)nF (rωq)
eβ(sωk+rωq) − 1
p0 + sωk + rωq

. (3.73)

Now that the summation over the internal energies has been done, we may continue
the external variable analytically into the complex plane p0 → z and to the real axis:
z → p0 + iε, where p0 is now the real valued energy of the photon. The ε-prescription
gives the retarded self energy.
The photon self energy (3.73) cannot be evaluated further analytically. However, in

the high-temperature limit, which is of the most interest, the integral can be simplified
considerably. In the literature this is referred to as the “Hard Thermal Loop (HTL)”
approximation. We have already assumed that the temperature is much larger than the
electron mass: ωk ∼ |k|. Let us also assume that the external energy and momentum
are small compared to the temperature: T � p0, |p|. On the other hand, the internal
momentum is of order |k| ∼ T . This allows the expansion: ωq = |p−k| = |k| −p ·v,v =
k/|k|. As a result we have:

k · q
ωkωq

� −1 (3.74)

p0 ± (ωk − ωq) � p0 ± p · v (3.75)

nF (ωk)− nF (ωq) � p · v dnF (ε)
dε

∣∣∣∣∣
ε=|k|

. (3.76)

The first approximation leads to a cancelation of half of the terms in (3.73) and we get

ΠL(p) = 2e
2
∫

d3k

(2π)3
[nF (ωk)−nF (ωq)]

(
1

p0 + iε+ ωk − ωq −
1

p0 + iε− ωk + ωq

)
. (3.77)

To obtain this form we also used the identity for the Fermi-Dirac distribution function

nF (ε)

1− nF (ε) = e
−βε . (3.78)

Next we use the second two approximations. We then see that the angular and radial
integrations become completely decoupled. The radial integration is performed with the
help of ∫ ∞

0
dkk2

dnF (k)

dk
= −π

2T 2

6
. (3.79)
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This then leads to the high-temperature expression for the longitudinal photon self energy

ΠL(p) = 3ω
2
pl

∫
dΩ

4π

(
p0

p0 − v · p+ iε − 1
)
, (3.80)

where dΩ indicates the angular integration over the direction of v. The plasmon frequency
ωpl, which in the high-T limit has the value ωpl = eT/3, may be considered as the thermal
photon mass generated by the interaction of the photons with the electrons and positrons.
Expression (3.80) is the “Hard Thermal Loop (HTL)” approximation for the photon

self energy. Its basic feature is the proportionality to T 2 as it can be shown that the terms
neglected are all of lower order in the temperature; the next term is proportional to T .

Problem 3.6

Perform the angular integration and show that the result can be expressed as

ΠL(p) = −e
2T 2

3

[
1− p0

|p|Q
(
p0
|p|
)]

, (3.81)

in terms of the Legendre function

Q(x) = 1
2
log

x+ 1

x− 1 (3.82)

defined in the complex plane cut from -1 to 1.

The above result makes explicit that the HTL photon self energy is of order T 2 and that
it has an imaginary part for space-like momenta |p|2 > p20:

log
p0 + |p|
p0 − |p| = log

∣∣∣∣∣p0 + |p|p0 − |p|

∣∣∣∣∣− iπθ(|p|2 − p20) . (3.83)

The resulting damping stems from the scattering of electron and positrons with momenta
of order T on low-momentum photons. In plasma physics this phenomenon is known as
Landau damping and it plays an important role in calculations of the energy loss or the
viscosity. We also note that in the static limit p0 = 0 the self energy is independent of |p|
and reduces to Π(0) = −3ω2pl. The static limit is related to the screening of static fields
and m2

D = 3ω
2
pl is the Debye mass.
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Chapter 4

Response Theory and Applications

When considering the properties of many-body systems, one is often interested in the
response of the system to an external disturbance. A simple example is provided by the
susceptibility of a system containing particles with a magnetic moment: one applies a
magnetic field and measures the resulting magnetic moment. Or one wants to study the
propagation of gauge bosons and fermions in a QED or QCD plasma by setting up some
disturbance. In all these situations one employs a probe which disturbs the system only
slightly from equilibrium and measures the linear time-dependent response which can be
Fourier analyzed into what is called a frequency dependent susceptibility.
In linear response theory the susceptibilities are found in terms of time-dependent

retarded correlation functions. The collective modes appear as poles of these correlation
functions. The imaginary part of the pole describes the decay time of collective excitations,
which usually is finite in a thermal system, and the real part the dispersion law giving the
energy as a function of momentum. However, even if no well-defined external disturbance
exists, as in the case of particle production and damping, it is still possible to express
the production rate, the damping coefficient and other thermal transport coefficients,
such as the viscosity, in terms of correlation functions. This indicates that retarded
time-correlation functions play an extremely important role in non-equilibrium statistical
mechanics. That goes beyond the pure linear response theory in which they originate.

4.1 Response theory

We begin with a short review of response theory. Consider a system in equilibrium with
a time-independent Hamiltonian Ĥ. Suppose now that at some initial time t = ti the
system is perturbed by turning on an additional time-dependent Hamiltonian of the form

V̂ (t) = −
∫
d3x â(x) h(t,x) , (4.1)

where â(x) is a hermitian operator corresponding to some observable local density (e.g.
the charge density or energy density), and h(t,x) an external c-number field. We assume
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that V̂ (t) vanishes for times before ti, and that at this time the system is in thermal
equilibrium.
Generally what one wishes to calculate is the average a(t,x) ≡ 〈â(t,x)〉 at a time

t > ti, with the equilibrium value at t = ti presumed to be known. To find the time
development of a(t,x), we first consider the Schrödinger picture in which â(x) = â(ti,x)
is time independent, and the exact state vector satisfies the Schrödinger equation

i∂t|ψ〉t = [Ĥ + V̂ (t)]|ψ〉t . (4.2)

We shall seek the solution in the form

|ψ〉t = e−iĤ(t−ti)Û(t, ti) |ψ〉t , (4.3)

where Ĥ is the Hamiltonian of the unperturbed system, and where the unitary operator
Û(t, ti) obeys the initial condition Û(ti, ti) = 1. Substitution of equation (4.3) into (4.2)
yields the evolution equation for Û :

i∂tÛ(t, ti) = V̂H(t)Û(t, ti) . (4.4)

Here V̂H(t) is the external Hamiltonian in the ordinary Heisenberg picture defined with
respect to time ti:

V̂H(t) ≡ eiĤ(t−ti)V̂ (t)e−iĤ(t−ti) (4.5)

= −
∫
d3x âH(t,x) h(t,x) . (4.6)

The formal solution of the evolution equation (4.4) is

Û(t, ti) = T exp−i
∫ t
ti
dt′ V̂H(t′) (4.7)

with T the time-ordering operator.
If we now bring the full interaction to the operators by defining

â(t,x) = Û(ti, t)âH(t,x)Û(t, ti) , (4.8)

the state vector becomes constant in time and describes the initial state which by assump-
tion is the equilibrium state. Therefore we may calculate the expectation value 〈â(t,x)〉
by taking the equilibrium average of the above equation:

〈â(t,x)〉 = 1

Z
Tre−βĤ Û(ti, t)âH(t,x)Û(t, ti) , (4.9)

where all operators at the right-hand side are in the Heisenberg picture. The time-order
implied by this expression is one in which the time runs from the initial time ti to the
actual time t, and then back again to ti. In fact one can let the time run up to some
arbitrary final time tf > t and then back again. Finally, the Boltzmann factor then
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Figure 4.1: Thermal field time-contour in the complex t plane

propagates the time from ti to ti − iβ. The successive time-contours may be joined to
form a single contour C, running up and down the real axis from and to ti and then down
to ti − iβ. Results should be independent of the initial and final times and in real-time
thermal field theory one usually takes the limit ti → −∞ and tf →∞. Note that in the
trace the Boltzmann factor could be moved to the right; this would yield a contour with
the imaginary part at the beginning. Other contours are also possible, and it is mainly a
matter of taste which one to prefer.
This situation is quite different from the vacuum theory. There Green functions are

usually defined by reducing the transition element to an in/out state amplitude 〈out|in〉.
The corresponding path integral has then a time contour from −∞ to ∞. However in
statistical mechanics, because expectation values are calculated by a trace, one always
has to come back to the initial time.

4.2 Linear response

Let us now restrict ourselves to terms linear in the perturbing field h(t,x) (Born approx-
imation). Then the solution of equation (4.4) is

Û(t, ti) = 1− i
∫ t
ti
dt′V̂H(t′) . (4.10)

Hence, the first-order change in 〈â(t,x)〉 arising from an external perturbation can be
expressed as

〈â(t,x)〉 = 〈âH(t,x)〉+ i
∫ ∞

ti
dt′ θ(t− t′)〈 [V̂H(t′), âH(t,x)] 〉 , (4.11)

in terms of the retarded commutator of the perturbation and the operator âH(t,x) in the
Heisenberg picture of the interacting but unperturbed system. Inserting (4.6) we find that
the linear response of the system induced by the external field to linear order is given by

δ〈a(x)〉 = i
∫ ∞

ti
dt′
∫
d3x′θ(t− t′)〈 [â(x), â(x′)] 〉 h(x′) , (4.12)

48



where the thermal average of the retarded commutator is called the retarded response
function.
We apply this to the important case of the scalar field:

V̂ (t) = −
∫
d3x φ̂(x)j(t,x) , (4.13)

where j(x) = j(t,x) is the external source and φ̂(x) the field operator in the Schrödinger
picture. We then obtain

δ〈φ̂(x)〉 = i
∫
d4x GR(x− x′) j(x′) , (4.14)

where
GR(x− x′) = θ(t− t′)〈 [φ̂(x), φ̂(x′)] 〉 (4.15)

is the retarded Green function which describes the causal behavior of the response. We
could replace the lower limit of the time integral by −∞, since the external field van-
ishes for t < ti. Furthermore, we may forget that the Heisenberg picture was defined
with respect to the time ti, on the strength of the translational invariance of equilibrium
correlation functions.
Equations (4.14) with (4.15) is the fundamental result of linear response theory. It

shows that the response function is the averaged commutator of two Heisenberg operators
at different times, i.e. a time correlation function. It represents the delay between the
applied field and the induced current. If the system can respond instantaneously then
the response function is a δ-function in time. Ordinarily, however, the system lags behind
and the response function is a monotonically decaying function of time.
Since we consider a system in equilibrium, the response function is translationally

invariant in space and time and we can define the Fourier transform of the commutator

〈 [φ̂(x), φ̂(x′)] 〉 =
∫

d4k

(2π)4
e−ik·(x−x

′)ρ(k) , (4.16)

which is called the spectral density. We know that ρ(k) is real, since it is a commutator
of hermitian operators, an odd function of k0, and that it only depends on |k|.
Problem 4.1

Show that the Fourier transform of the retarded response function has the spectral
form

G̃R(k) =
∫ ∞

−∞
dk′0
2π

ρ(k′0,k)
k0 − k′0 + iε

(4.17)

and compare with the free case (1.74).

In terms of this retarded response function the linear response (4.14) may be written as

δ〈φ̃(k)〉 = G̃R(k)j̃(k) , (4.18)
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which shows that the system responds at the same wave vector and frequency as the
perturbation. The quantity G̃R(k) is therefore a generalization of the complex dynamical
magnetic susceptibility as it is usually defined in electromagnetism. Its imaginary part
describes decay and its real part, which is connected to the imaginary part by a Kramers-
Kronig relation, dispersion.
We consider one last quantity, namely the complex response function

G(z,k) =
∫ ∞

−∞
dk0
2π

ρ(k)

k0 − z , (4.19)

which is an analytic function of the complex frequency variable z as long as Im z �= 0. The
retarded response function, i.e. the physical response, is given by the limit as z approaches
the real axis from above. This complex response function looks exactly like the analytic
propagator (1.79) introduced in chapter 1, except that ρ(k) is now the spectral density of
the interacting system. In the lower half plane G(z,k) corresponds to the Fourier-Laplace
transform of the response function for negative times, that is, the advanced response
function.

Problem 4.2

a. Show that the boundary value in the lower half plane is equal to the advanced
response function

G̃A(k) = G(k0 − iε,k) . (4.20)

b. Identify the spectral density with the discontinuity

G̃R(k)− G̃A(k) = iρ(k) (4.21)

across the branch cut.

The above described derivation of linear response theory seems to be completely rigorous
since it only uses first-order perturbation theory. Nevertheless, this simple argument hides
a fallacy, as has been argued by van Kampen (1971). The point he makes is the following:
it is certainly true that the macroscopic response of a system is often linear. However, it
is false to assume that this linearity is the result of a linearity of the equations of motion
on the microscopic level. The linearity of macroscopic phenomena is a much more subtle
effect and involves the fundamental ideas of statistical mechanics. In contrast, the simple
derivation of linear response given above is completely dynamical and makes no use at all
of statistical arguments. The question why linear-response theory still provides a correct
description in spite of a derivation which is so obviously wrong, is very difficult to answer
in detail. The general idea is that the precise details of the motion of the particles are
very quickly forgotten on the scale of the external disturbance. What results is an average
behavior which is simulated by the linear approximation.
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4.3 Collective excitations

The properties of particles are modified when they propagate in a medium, as they become
dressed by their interactions. For example, they may acquire an effective mass which is
different from the vacuum mass. Generally, one speaks of collective modes in the case
of bosons and of quasi-particles in the case of fermions. The quasi-particle concept is
of fundamental importance in analyzing many-particle systems. It often allows one to
replace a complicated system of strongly interacting particles by an equivalent system
of weakly interacting quasi-particles. In some case the quasiparticles are easily identified
with elementary particles whose properties are only slightly modified by their interactions
with the medium. On the other hand, in other cases the collective modes have no vacuum
analogon and are a purely collective effect propagating through the medium.
Collective modes (quasiparticles) are characterized by a dispersion relation ω(k) giving

their energy as a function of momentum. Usually their life-time is not infinite and another
relevant quantity is the damping rate γ(k). Collective modes are identified as poles of
the retarded propagator in the complex energy plane. The bare retarded propagator
D̃R = 1/(k2−m2 + isign k0ε) describes the dispersion relation of a non-interacting scalar
particle. One may note that both poles k0 = ±ωk − iε are below the real axis.
In the interacting case, the dispersion relation usually will have an imaginary part.

As an example, we consider a scalar field. Let us assume that the interacting retarded
Green function is given as the boundary value of the analytic function

G̃R(k) = G(k0 + iε,k)

G(z,k) =
1

z2 − ω2k − Π(z,k)
, (4.22)

which has no poles in the upper half plane. In general the the frequency will have a real
and an imaginary part. Defining Re z = ω and the damping rate γ = −Im z, we have for
a plane wave exp(−izt) = exp(−iωt) exp(−γt). The dispersion relation is given by the
solution of the equation

(ω − iγ)2 − ω2k −ReΠ(ω − iγ,k)− iImΠ(ω − iγ,k) = 0. (4.23)

In the case of no overdamping, γ � ω, we get

ω2 − ω2k − ReΠR(ω,k) = 0 , (4.24)

2iωγ + i ImΠR(ω,k) = 0 , (4.25)

where ΠR(ω,k) = Π(ω + iε,k). From the first relation we get the dispersion relation
ω = ω(k), and from the second one

γ = − 1

2ωk
ImΠR(ω(k),k) . (4.26)

If we find such a pole with a small damping rate γ, then we say that there is a collective
mode (quasi-particle) with energy h̄ω(k) and life time γ−1. If there are several poles, the
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dominant term for large t arises from the pole closest to the real axis, because it has the
least damping.
Alternatively, we may derive the dispersion relation and the life-time from the spectral

density which is obtained by calculating:

ρ(k) = −1
π
Im

1

k20 − ω2k −ReΠR(k)− iImΠR(k)
,

=
1

π

2ImΠR(k)

[k20 − ω2k −ReΠR(k)]2 + [ImΠR(k)]2
(4.27)

The spectral function has the Breit-Wigner form describing excitations with finite width.
If the self energy is a slowly varying function of energy we can think of ImΠR(k) as the
energy and momentum dependent life-time of a single particle state, and regard ReΠR(k)
as the energy gained by the particle through its interaction with the surrounding medium.
To see this more explicitly, we first look for the solution of the dispersion relation:

k20 − ω2k − ReΠR(k) = 0 . (4.28)

If such a solution ω(k) exists, it defines the position of the peak. For energies not too far
from ω(k), we can expand the slowly varying functions around

ReΠR(k) = M2(k) + [k0 − ω(k)]M ′(k) + · · · (4.29)

ImΠR(k) = −Γ(k) + · · · . (4.30)

To first order we obtain in this way

ρ(k) � −1
π
Im

Z(k)

k20 − ω(k)2 + iγ(k)
, (4.31)

where we introduced the damping constant γ(k) = Z(k)Γ(k) and the renormalization
factor Z(k) = 1/[1 − M ′(k)]. If the damping is zero, the spectral density reduces to
delta-function at the energy ω(k). In the more general case of non-vanishing, but small,
imaginary part, the spectral density has a Lorentzian line-shape representing a dynamical
quasiparticle
Now let us take as an example the longitudinal high-temperature photon propagator

calculated in section 3.6. The dispersion relation of the collective photon mode in the
relativistic electron-positron plasma follows from the poles of the effective propagator

[G̃R(k)]−1 = k2 + 3ω2pl

(
1− k0

2|k| log
k0 + |k|
k0 − |k|

)
= 0 . (4.32)

Figure 4.2: Effective photon propagator
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In the static limit k0 → 0, the effective propagator reduces to 1/(k2 + 3ω2pl). Thus, the

long-range interaction is screened in the IR limit by the Debye mass mD =
√
3ωpl owing

to the presence of electric charges in the medium.
The equation (4.32) cannot be solved analytically. In the limits, |k| → 0 and |k| → ∞,

however, there are simple solutions:

ω(|k| → 0) = ωpl +
3

10

|k|2
ωpl

, (4.33)

ω(|k| → ∞) = |k| . (4.34)

In the last limit the dispersion relation of the bare photon is recovered. In the limit
|k| → 0, on the other hand, the dispersion relation describes a non-relativistic particle
with mass ωpl. This particle corresponds to a collective mode called the plasmon. The
dispersion relation lies above the light cone, ω > |k|, for all values of |k|. Therefore, the
imaginary part of the self-energy vanishes and plasma oscillations are not damped in the
high-temperature approximation, that is, there is no Landau damping causing dissipation
of energy from the plasma wave in a heat bath. In a QGP there are similar collective
gluon modes.

4.4 Production rate

An important application of thermal field theory is the calculation of damping and pro-
duction rates of particles at high-T in gauge theories. The recent experimental interest
in the Quark Gluon Plasma (QGP) has been a major stimulus for a detailed study of
production rates and energy losses of various processes. For example, electromagnetic
probes (photons, dileptons) have been proposed as promising signatures of the formation
of QGP. When these particles are produced in relativistic heavy-ion collisions, they leave
the fireball without further interactions, thus providing a direct probe for the strongly
interacting system.
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Figure 4.3: Dispersion relation of transverse (upper branch) and longitudinal (lower brach)
plasma waves
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Damping rates and production rates are related to each other by the principle of
detailed balance. Since the photon damping rate to lowest order in naive perturbation
theory is logarithmically IR-divergent for a vanishing quark mass, we consider here as
a simpler example, the thermal production of a massive particle, which interacts only
weakly with the particles of the heat bath. When it is produced it escapes and never
has enough interactions with the heat bath to thermalize. We assume the particles of the
heat bath to be scalar bosons φ, which we take massless. We denote the heavy scalar
particle as Φ, and assume that the production occurs through the reaction φ + φ → Φ,
which is governed by the interaction λΦ(x)φ(x)2, with a small coupling constant λ. The
scalar fields φ may interact strongly among themselves, but we do not need specify this
interaction. We could think of this as a model for the production of a heavy virtual
photons in a QGP plasma.
In the description of the production process we assume the initial state of the system

to be a stationary state |ϕi〉 with energy Ei. At t = ti the system is disturbed by turning
on the additional interaction described by the time-dependent Hamiltonian

V̂H(t) = λ
∫
d3x Φ̂(x)φ̂(x)2 . (4.35)

The amplitude for finding the system at time tf in the stationary state |ϕf〉 corresponding
to the energy Ef is then given by

〈ϕf |ϕi〉 = 〈ϕf | eiĤ(t−ti)Û(t, ti) |ϕi〉
= 〈ϕf | Û(t, ti) |ϕi〉e−iEf (t−ti) . (4.36)

Hence the increase per unit time of the probability that a system initially in the state
|ϕi〉 will be found at time t in the state |ϕf〉 is

wfi =
d

dt

∣∣∣〈ϕf | Û(t, ti) |ϕi〉∣∣∣2 . (4.37)

Making use of the equation of motion (4.4), we note that this may be written as

wfi = 2 Im 〈ϕf | V̂HÛ(t, ti) |ϕi〉〈ϕi| Û(tf , t) |ϕf〉 . (4.38)

If we assume that |ϕi〉 �= |ϕf〉 and that the Born approximation is sufficiently accurate,
we obtain

wfi = 2i Im 〈ϕf | V̂ |ϕi〉
∫ t
ti
dt′ei(Ei−Ef )(t

′−t)〈ϕi| V̂ |ϕf〉 . (4.39)

Now we take the lower limit as ti = −∞ and suppose that the perturbation is being
turned on adiabatically V̂ → V̂ eεt:

wfi = 2 Im
1

Ei −Ef − iε
∣∣∣〈ϕf | V̂ |ϕi〉∣∣∣2

= 2πδ(Ei −Ef )
∣∣∣〈ϕf | V̂ |ϕi〉∣∣∣2 . (4.40)
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This result, which is called Fermi’s Golden Rule, is independent of time and gives the
transition probability per unit time from the initial to the final state.
We apply the golden rule to the example of the production of Φ particles. The matrix

element for a Φ-particle to be produced with energy and momentum q is

〈ϕf | V̂ |ϕi〉 = λ
∫
d3x〈q| Φ̂(x) |0〉〈f | φ̂(x)2 |i〉 , (4.41)

where |i〉 and |f〉 refer to the states of the φ-particles. The first matrix element is easily
calculated and gives

〈q| Φ̂(x) |0〉 = 1

(2π)3
e−iq·x . (4.42)

To derive this we have used the standard decomposition of the operator Φ̂ in plane waves.
The matrix element (4.41) so becomes

〈ϕf | V̂ |ϕi〉 = λ

(2π)3

∫
d3x e−iq·x〈f | φ̂2(x) |i〉 . (4.43)

By using the Fourier representation of the δ-function, we may write the S-matrix element
for the transition i→ f as

Mfi = 2πδ(Ef −Ei − q0)〈ϕF | V̂ |ϕi〉 = λ
∫
d4x eiq·x〈f | φ̂(x)2 |i〉 . (4.44)

Putting now (4.41) and the last equation into the golden rule (4.40), and summing over
the final states of the bath particles we get

∑
f

wfi =
λ2

(2π)3
Re

∫
d4x

∫
d3x′ eiq·x〈i| φ̂(x′)2φ̂(x)2 |i〉 . (4.45)

Finally we average the transition rate over the equilibrium distribution of initial states.
We then obtain the transition rate per unit volume and time as

1

V Z(T )

∑
i,f

e−βEiwfi =
λ2

(2π)3
Π̃<(q) , (4.46)

which expresses the production rate in terms of the Fourier transformed correlation func-
tion

Π̃<(q) =
∫
d4x eiq·x〈 φ̂(0)2φ̂(x)2 〉 . (4.47)

We may regard the correlation function (4.47) as the self-energy of the Φ-particle in
the heat bath. To make contact with the retarded self energy, we recall the relationship
(1.53), which is generally valid for any correlation function:

Π̃>(q) = eβq0Π̃<(q) . (4.48)
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Furthermore, we may generally define a spectral density through

ρ(k) ≡ Π̃>(q)− Π̃<(q) =
(
eβq0 − 1

)
Π̃<(q) (4.49)

= −2Im Π̃R(q) , (4.50)

which implies the relationship

Π̃<(q) = −2n(q0) Im Π̃R(q) . (4.51)

This is another instance of the general property that all 2-point equilibrium correlation
functions may be expressed in terms of the spectral density.
The total production rate per unit volume and per unit time of Φ-particles with energy

q0 is then

Γ(q0) = λ2
∫ d3q

(2π)32q0
Π̃<(q)

= −λ2
∫

d3q

(2π)3
n(q0)

Im Π̃R(q)

q0
. (4.52)

Damping rates, production rates and transport coefficients of thermal system are similarly
determined by the imaginary part of the corresponding retarded self energy.

Problem 4.3

Verify that the combination of the imaginary part of the retarded self energy with q0
in the last factor of (4.52) ensures that this factor is even in q0.
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Chapter 5

Real-Time Formalism

Retarded correlation functions can be obtained by a procedure of analytic continuation of
Euclidean (ITFT) Green functions. However, except for the simplest cases, this procedure
is usually less than straightforward. Analytic continuation can be avoided entirely by
calculating Green functions in the real-time formulation of thermal field theory (RTFT).
In this formulation the time-path includes the real-time axis. The original version of
RTFT is due to Schwinger (1961) and Keldysh (1963) who considered a closed time path
running up and down the real time-axis. The forward and return pieces give rise to a
doubling of the degrees of freedom and to a 2 × 2 matrix structure of propagators and
self-energies.
By shifting the back contour down in the complex plane one can construct a whole

family of equivalent formulations, which only differ in the explicit form of the propagators.
It can be argued on the basis of the analytic structure of the Green functions that the
physics is independent of the choice of the back contour. Although there has be some
confusion in the past, it is now generally accepted that ITFT and RTFT, in any version,
give exactly the same results in perturbation theory. This has now been checked in a great
many explicit calculations. Therefore, the choice for ITFT or RTFT very much depends
on the problem at hand. For example if one is interested in the classical limit of TFT,
the real-time formulation is the most appropriate.

5.1 Generating functional

In the preceding chapter we have seen that the calculation of real-time equilibrium corre-
lation functions necessarily involves a time contour C running up and down the real axis;
see Fig 4.1. Let us consider a general thermal Green function

G(N)(x1, . . . , xN) = 〈 TC φ̂(x1) . . . φ̂(xN ) 〉
=

1

Z

∫
Dϕ(x)〈ϕ(x); ti| e−βĤTC φ̂(x1) . . . φ̂(xN)|ϕ(x); ti〉 , (5.1)

defined as the statistical average of a product of Heisenberg fields ordered along the
contour C. The ordering instruction TC orders the operators along the given path C,
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that is, it prescribes that the operators it is applied to be arranged in the order in which
their time-arguments lie along the oriented contour C; those nearest to the beginning at
the right and those nearest to the end to the left. If the contour is parametrically given
as a function t = z(τ) with τ monotonically increasing, the TC operation is nothing but
standard time ordering with respect to τ .
Contour ordering can be formalized by introducing a contour step function and a

contour Dirac delta-function according to:

θC(t− t′) = θ(τ − τ ′) , (5.2)

δC(t− t′) =
(
∂z

∂τ

)−1
δ(τ − τ ′) . (5.3)

With these definitions we may write, for example,

TC φ̂(x)φ̂(x
′) = θC(t− t′)φ̂(x)φ̂(x′) + θC(t′ − t)φ̂(x′)φ̂(x) . (5.4)

Functional differentiation can also be extended in a straightforward manner,

δj(x′)
δj(x)

= δC(t− t′)δ(x− x′), (5.5)

for c-number functions j(x) living on the contour.
In the chapter on path integrals we have seen that the FMS path-integral formula

may be applied for any contour that goes parallel to the real axis or downward. The
derivation proceeds by dividing up the contour in infinitesimal pieces and inserting at
each intermediate point a complete set of coherent states. Hence, the contour ordered
Green functions may be obtained from the generating functional

Z[j] =
∫
Dφ exp i

∫
C

d4x[L(x) + j(x)φ(x)] , (5.6)

where L(x) is the Lagrangian of the system. Because the trace in the thermal average
demands that the fields at the begin and end points are the same, and the action of
the canonical density operator can be represented as an imaginary time shift, the path
integration is over all c-number fields φ(x) which satisfy the periodic boundary condition

φ(ti − iβ,x) = φ(ti,x) , (5.7)

where ti is some chosen initial time. This imposes on the contour C, which defines the
action

S =
∫
C

d4xL(x) (5.8)

in the exponent of the path integral (5.6), the condition that it starts at z = ti and ends
at z = ti − iβ, subject to the monotony condition mentioned earlier.
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Contour-ordered thermal Green functions are obtained by functional differentiation
with respect to the source in the usual manner. In particular, connected Green functions
are obtained from the logarithm of the generating functional

G(N)(x1, x2, . . . , xN ) =
δN logZ[j]

iδj(x1) . . . iδj(xN)

∣∣∣∣∣
j=0

. (5.9)

As already explained, it is preferable to work with connected Green functions; not only
are they diagrammatically simpler objects, but also they have the cluster property, that
is, connected Green functions fall off to zero when the distance between the field points
increases.

5.2 Perturbation expansion

Formally the path-integral representation for the generating functional (5.6) very much
looks like the generating functional for the vacuum Green functions. This allows us to
derive a perturbative expansion by the standard reasoning. We split the Lagrangian into
a quadratic part and a remainder

L(x) = L0(x) + LI(x) . (5.10)

The quadratic part is given by

L0(x) = 1
2
φ(x)Λ(i∂)φ(x) , (5.11)

where Λ(i∂) is a differential operator of finite order. The corresponding contour propa-
gator is defined by the equation

Λ(i∂)DC(x− x′) = δC(t− t′)δ(x− x′) , (5.12)

where δC is the delta-function on the contour. A unique solution is obtained by specifying
the proper boundary condition. For thermal field theory the boundary condition is

DC(ti − iβ − t′,x) = DC(ti − t′,x) , (5.13)

which is just the KMS-condition.
The free generating functional

Z0[j] =
∫
Dφ exp i

∫
C

d4x [ 1
2
φ(x)Λ(i∂)φ(x) + j(x)φ(x)] (5.14)

may now be calculated in the usual manner by shifting the field according to

φ(x)→ φ(x)−
∫
C

d4x′DC(x− x′)j(x′) . (5.15)
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The boundary condition (5.13) guarantees that the shift preserves the periodicity (5.7) of
the fields. With the help of Eq. (5.12) we obtain the result

Z0[j] = Z0[0] exp− i
2

∫
C

d4xd4x′ j(x)DC(x− x′)j(x′) , (5.16)

which is Wick’s theorem is this context.
Having established the explicit form of the free generating functional, we now write

the full generating functional

Z[j] =
∫
DeiS0ei(SI+j·φ) (5.17)

with j ·φ = ∫
C d

4x j(x)φ(x). The Feynman rules follow by associating interaction vertices
with SI and propagator lines with DC . By expanding out the last exponential in Eq.
(5.17), all diagrams of the theory are generated.
In comparison to the vacuum theory there are two new features:
• the time integrations are to be performed along a contour C from an arbitrary time
ti down to ti − iβ,

• the propagator depends on the contour.
A specific choice of the contour C will lead to a specific formulation of quantum field
theory and a corresponding specific set of Feynman rules. It is possible to extend the
above considerations to fermionic field theories, and in fact to any theory that can be
represented in a path-integral form.

5.3 Contour propagator

As an illustration we calculate the contour propagator for a system of Klein-Gordon
particles. One may try to solve (5.12) directly. However, on account of Eq. (5.9) we may
identify the propagator obtained from (5.16) as the two-point thermal Green function
associated with the free Lagrangian (5.11), apart from a conventional factor i,

iDC(x− x′) = 〈TC φ̂(x)φ̂(x′)〉0 . (5.18)

Comparing now with the thermal propagator (1.58) derived in chapter 1 for time-ordered
fields, one easily writes down the solution of the inhomogeneous KG equation (5.12):

iDC(x− x′) =
∫ d4k

(2π)4
ρ0(k)e

−ik·(x−x′)[θC(t− t′) + ηn(ω)] , (5.19)

where

n(ω) =
1

eω − η (5.20)

is the equilibrium distribution function for both statistics with ω ≡ β(k0 − µ) and η = 1
for bosons and η = −1 for fermions. The contour step function is zero for times t earlier
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than t′. The spectral density already has been defined in (1.49) for scalar particles of
mass m and we give the formula once more

ρ0(k) = 2πsign(k0)δ(k
2 −m2) (5.21)

= −iD̃R(k) + iD̃A(k) , (5.22)

where the propagators in the last line are the free advanced and retarded propagators
(1.75) already defined in chapter 1.
This spectral representation of the contour-ordered propagator was first derived by

Mills (1969) for nonrelativistic particles. In the case of ordinary time-ordering it reduces
to the result of Dolan and Jackiw (1974).
One may verify that the contour propagator indeed satisfies the boundary condition

Eq. (5.13). In other words the propagator is periodic in imaginary time. This is the
KMS-condition which any two-point equilibrium correlation function should satisfy. It
implies that the spectral form (5.19) also holds true for interacting fields, albeit with a
different spectral density, because the KMS-condition is equally valid in that case. Similar
expressions may be obtained for fermionic and gauge fields.
The spectral representation of the contour propagator is useful for the formal devel-

opment of real-time thermal field theory, because it is valid for any contour that starts
at ti and goes down to ti − iβ. For practical calculations, however, we have to be spe-
cific. In thermal field theory, historically the standard contour has been the most obvious
one, namely a straight line down the imaginary time axis. This leads to the Matsubara
formalism as discussed in chapter 2.
We now consider the contour C depicted in Fig 4.1, which allows a direct evaluation

of real-time Green functions since the contour contains the real axis. Three segments of
the contour C = C1 ∪C2 ∪C3 may be distinguished: the segment C1 that covers the real
axis, the return-path C2 and the Euclidean segment C3 = CE. It is convenient to define
a matrix propagator with components

Drs(t− t′) = DC(tr − t′s) , (5.23)

with tr on Cr and t
′
s on Cs, r, s = 1, 2, 3. The times t = t2, t3 on C2, C3 are always later

than t1 = t on C1. In principle, the two time variables in contour propagator DC(x− x′)
can be located on any of the three segments and the Feynman rules would involve a 3× 3
matrix of propagators. However, if one takes the limit ti, tf → ±∞ in an appropriate
manner it can be shown that the Euclidean segment decouples from the vertical segments;
see the section below. The contour C then reduces to the closed time path C1 ∪ C2, first
considered by Schwinger (1961) and Keldysh (1963).
Taking as a fact that in RTFT only the two real-time segments C1 from −∞ to

+∞ and C2 from +∞ to −∞ need be considered, we may now determine the relevant
propagators. In fact these can be extracted immediately from the general expression for
the contour propagator (5.19). After a Fourier transformation we get:

iD̃11(k) =
i

k2 −m2 + ik0ε
+ ηρ0(k)n(ω) , (5.24)
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C1

−∞ > +∞
<

C2

Figure 5.1: Closed time path (Keldysh) contour

iD̃22(k) =
−i

k2 −m2 − ik0ε + ηρ0(k)n(ω) , (5.25)

iD̃12(k) = ηρ0(k)n(ω) , (5.26)

iD̃21(k) = ρ0(k)e
ωn(ω) . (5.27)

The non-thermal terms here are the retarded and advanced propagators (1.75).

Problem 5.1

a. Show that in momentum space the matrix propagator can be expressed in terms of
the Feynman propagator:

iD̃11(k) =
i

k2 −m2 + iε
+ η2πδ(k2 −m2)n(|ω|) , (5.28)

iD̃22(k) =
−i

k2 −m2 − iε + η2πδ(k
2 −m2)n(|ω|) , (5.29)

iD̃12(k) = η2πsignk0δ(k
2 −m2)n(ω) , (5.30)

iD̃21(k) = 2πsignk0δ(k
2 −m2)eωn(ω) , (5.31)

where n(|ω|) must be understood as:

n(|ω|) = θ(ω)

eω − η +
θ(−ω)
e−ω − η ; . (5.32)

Hint: use the relationship

D̃R(k) = D̃11(k)− D̃12(k) = θ(k0)D̃F (k)− θ(−k0)D̃∗
F (k) . (5.33)

b. In this ”Feynman”-representation the vacuum part is cleanly separated from the
thermal part. Show that in the vacuum limit T → 0 the distribution function n(|ω|)
vanishes and that the matrix propagator reduces to a trivial diagonal matrix.

c. Consider separately the case of a degenerate Fermi system at zero temperature.

The thermal and vacuum parts of the contour propagator may be separated in an elegant
manner by introducing a transformation matrixM(k) such that the matrix propagator is
factorized:

D̃(k) =M(k)

(
0 D̃R(k)

D̃A(k) 0

)
MT (−k) . (5.34)
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Using (5.22), one may verify that the appropriate thermal matrix is

M(k) =

( −ηn(ω) 1
n(ω) eω 1

)
. (5.35)

This construction is such that it is invariant under the combined operations of transposi-
tion and inversion of k, as is the matrix propagator itself: D̃rs(k) = D̃sr(−k). Because in
diagrams propagators are always connected to vertices, the factorized form (5.34) could
be used to absorb the thermal part entirely in the vertices and work with Feynman rules
containing only vacuum propagators.

5.4 Feynman rules

In the preceding section we have already asserted that we only need the two contour
pieces C1, C2 into account. Formally we define two-component vectors φ = (φ1, φ2) and
j = (j1, j2), where we separated explicitly the two segments of the contour C: φr(x) =
φ(tr,x), jr(x) = (−1)r−1j(tr,x), tr ∈ Cr, r = 1, 2. The two types of fields and sources
are to be regarded as independent. The path integral representation (5.17) may then be
written in the equivalent form:

Z[j1, j2] =
∫
Dφ1Dφ2 exp i

∫ ∞

−∞
d4x

[
φr(D

−1)rsφs + LI(φ1)−LI(φ2) + jrφr
]
. (5.36)

The time integral runs from t = −∞ to t =∞ and the minus sign occurs because of the
change of time direction on the backward contour. One might have expected also minus
signs in the quadratic part and source term. However, in applying (5.36) it is understood
that

δjr(t)

δjs(t′)
= δrsδ(t− t′), r, s,= 1, 2 , (5.37)

in contrast to what is prescribed by rule (5.5) which implies a minus sign on C2 due to
the negative orientation. This minus sign is absorbed in the definition of the source j2(x).
From now on we adopt the new sign covention. In passing we remark that boundary
conditions are unimportant because they are only needed for the determination of the
propagators which we already know.
The generating functional (5.36) makes it evident that an effective doubling of the

degrees of freedom is necessary in order to be able to calculate real-time Green functions.
From the generating functional, real-time Green functions are obtained by functional
differentiation:

G(N)(x1, x2, . . . , xN) =
δN logZ[j]

iδj1(x1) . . . iδj1(xN )

∣∣∣∣∣
j1=j2=0

, (5.38)

with respect to the c-numbers sources j1(x). This implies that only type-1 fields appear
on external lines. The type-2 fields may be interpreted as some sort of ”ghost” field, since

63



they only appear on internal lines. This doubling is absent in the Matsubara formalism
and one might be inclined to consider it as a mathematical artefact. However, in the
axiomatic formulation of quantum statistical mechanics a similar doubling occurs. This
indicates that a two-component formulation is the prerequisite for a consistent Minkowski-
space thermal field theory.
We are now in the position to state the Feynman rules. In the expansion of (5.36)

two types of vertices occur, one type describing the interactions of the original real-time
field φ1 and the other the interactions of the thermal ghost field φ2. The Feynman rules
for these two types of vertices differ only by a minus sign. There is no direct coupling
between the two fields, but they can propagate into each other because of the non-diagonal
elements of the matrix propagator. External lines of physical Green functions are always
of type-1. Therefore, to find a particular Green function G̃1...1(k1, . . . , kN) in momentum
space, we must draw all diagrams with N external lines of type-1, and an arbitrary number
of vertices of type r = 1, 2. These two types of vertices are connected to each other by
(directed) propagator lines representing D̃rs(k).

We now summarize the rules for a scalar λφ4-theory:
(i) Draw diagrams and determine symmetry factors as in vacuum field theory.

(ii) Assign a propagator iD̃rs(k) = 〈φrφs〉0 = r s to each line connecting
vertices.

(iii) Assign a factor −iλ to each type-1 vertex and a factor iλ to each type-2 vertex.
(iv) Conserve energy and momentum at each vertex according to the usual prescription:

(2π)4δ(
∑
i ki); global energy and momentum conservation may be separated off by

excluding one arbitrarily chosen vertex.

(v) Integrate over all internal momenta and energies according to
∫
d4k/(2π)4; sum over

all values of the internal indices r = 1, 2.
Compared to the Feynman rules of the vacuum theory, the difference is the matrix prop-
agator and the occurrence of two type of vertices.
As in the vacuum theory disconnected blobs without external legs may be ignored.

In fact they are exactly equal to unity, that is, the sum of all bubble diagrams, with
vertices occurring once as type-1 and once as type-2 (and hence with a minus sign),
exactly vanishes. This may be expressed as

logZ[j1 = 0, j2 = 0] = 0 . (5.39)

This theorem is rather obvious from the defining equation (5.36). It was first discovered
in the context of the Keldyhs formulation of TFT.

5.5 Keldysh formulation

Calculations of real-time Green functions become rather cumbersome at higher order in
the coupling constants. Moreover, the quantities of the most interest are the retarded
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en advanced Green functions, and not the time-ordered ones. Therefore we discuss in
this section a set of rules which is more economical and is aimed at obtaining retarded
and advanced Green functions. This is a variation on the real-time formulation of finite
temperature field theory, based on the observation that the two-point Green functions
satisfy the identity

G11(x, y)−G12(x, y)−G21(x, y) +G22(x, y) = 0 , (5.40)

which can be checked directly from the their definitions. Similar relations hold for higher-
order Green functions,

∑
s1,...,sN

(−1)#{i|si=−1}G(N)
s1,...,sN

(x1, . . . , xN) = 0 . (5.41)

These relations are often referred to as largest-time-equations (LTE), because they follow
from the fact that the two segments of the contour C are connected at t =∞.
The Keldysh-formulation makes use of the LTE (5.40) to reduce the number of prop-

agators to three. First we change notation; from now on we denote the two branches of
the contour as C+, C− and the corresponding fields and sources φ±, j±. Subsequently, we
perform a linear transformation of the fields φ+,− to a ”classical” field φ1 and a ”quantum”
field φ2 according to (

φ1
φ2

)
=

(
(φ+ + φ−)/2
φ+ − φ−)/h̄

)
, (5.42)

such that the (free) matrix propagator takes the form

ih̄D(x− x′)→
(

F0(x− x′) ih̄DR(x− x′)
ih̄DA(x− x′) 0

)
. (5.43)

Here the free retarded and advanced propagator functions are given in momentum space
by the expressions (1.75), whereas the thermal Keldysh propagator in momentum space
reads

F̃0(k) = 1
2
h̄ coth(h̄ω/2)ρ0(k)

= h̄
∑
s=±
[n(sωk) + 1

2
]
1

2ωk
2πsδ(k0 − sωk) . (5.44)

The retarded and thermal two-point functions are related by the KMS condition (fluctuation-
dissipation theorem)

F̃0(k) = ih̄ n(h̄ω)
[
D̃R(k)− D̃A(k)

]
. (5.45)

In these formulae we have explicitly displayed h̄ to indicate the difference between the
quantum thermal part F̃0, and the retarded and advanced propagators which are basically
classical.
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K

(a) (b)

Figure 5.2: Propagators: (a) D̃R(k) = D̃A(−k), (b) F̃0(k).

Figure 5.3: Vertices: (a) 1
3!
λφ31φ2, (b)

1
4!
λφ1φ

3
2.

Feynman rules appear when also the interaction part along the closed time path con-
tour is written in terms of the φ1,2 fields

SI = −
∫
d4x

(
1

4!
λφ4+ −

1

4!
λφ4−

)

= −g2
∫
d4x

(
4φ31φ2 + h̄

2φ1φ
3
2

)
, (5.46)

where we defined the dimensionless coupling constant g2 = λh̄/24.
The rules are presented pictorially in figs. 5.2 and 5.3. The φ1 field is denoted with a

full line and the φ2 field with a dashed line. The contractions that appear are

〈φ1(x)φ1(x′)〉0 = F (x− x′) , (5.47)

〈φ1(x)φ2(x′)〉0 = iDR(x− x′) , (5.48)

〈φ2(x)φ1(x′)〉0 = iDA(x− x′) . (5.49)

Since retarded and advanced propagators interpolate between a φ1 and an φ2 field, they
are indicated with a dashed-full line. For the retarded and advanced Green functions, it
is necessary to specify the direction of the momentum flow through the propagator, and
this is indicated with the arrow.
The Feynman rules are the same as before, except:
(i) Thermal correlation functions have N full legs.

(ii) The retarded self energy and the so-called generalized retarded N -point functions
have one dashed leg and N − 1 full legs. These are shown in fig. 5.4. The arrows
denote again the momentum flow of the external momenta.
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n-1

(b)

1

(a)

Figure 5.4: (a) Retarded self-energy, (b) generalized retarded N -point functions.

(iii) Diagrams are constructed using vertices (a) and (b).
One may note that vertex (b) can only appear in a diagram with retarded (or advanced)

propagators attached to the three dashed legs. After attaching these propagator functions,
the resulting outer lines (which either still have to be attached to another vertex or are
external lines) are always full lines. However, such a configuration can be constructed as
well with vertex (a); this vertex has two full lines where vertex (b) has two dashed legs.
By attaching two thermal two-point functions on these legs, the external lines are full as
well, and the vertices can be part of a diagram in exactly the same manner, but with two
more thermal functions.
As a simple example we compute the retarded one-loop self energy for the three-point

coupling

SI = −
∫
d4x

(
1

3!
φ3+ −

1

3!
φ3−

)

= −h̄
∫
d4x

(
1
2
φ21φ2 +

h̄2

4!
φ32

)
, (5.50)

where we have set the coupling constant equal to unity for simplicity. A retarded diagram
begins with a full line and ends with a dashed line. At one-loop we get two diagrams as
drawn in the figure. The thermal contribution is

Π̃R(p) =
∫

d4k

(2π)4
F̃ (k)D̃R(p− k) . (5.51)

Substsituting the representations (1.75) and (5.44) we arrive at:

Π̃R(p) =
∑

s,s′=±1

∫ d3k

(2π)3
s

2ωk

s′

2ωp−k

[n(sωk) + n(s
′ωp−k) + 1]

p0 + iε− sωk − s′ωp−k , (5.52)

where p0 is the real external energy. This form looks very much like the photon self energy,
we have calculated in chapter 3. The calculation of this quantity with the Keldysh rules,
we leave as an exercise.

Problem 5.2
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Figure 5.5: Thermal and vacuum self-energy for a three-point coupling.

Calculate the retarded photon self energy

Π̃Rµν(k) = Π̃
11
µν(k) + Π̃

12
µν(k) (5.53)

with the Keldysh rules.

5.6 Some matters of principle

Above we have stated without proof that in the calculation of real-time Green functions,
the imaginary part of the contour can be ignored when ti → −∞. This implies that the
generating functional factorizes into a contribution from the two infinite contours C1∪C2

and one from the imaginary part CE :

Z[j] = Z12[j]ZE[j] . (5.54)

The last factor is the Euclidean generating functional discussed in the preceding chapter.
However, for the calculation of real-time Green functions with time arguments either on
C1 or C2, this factor is just a multiplicative constant which entirely drops out.
To see how the factorization comes about, it is useful to consider the perturbative

expression for an N -point thermal Green function

G(x1, . . . , xN) =

〈φ(x1) . . . φ(xN) exp i ∫
C
d4xLI(x)〉0

〈exp i ∫
C
d4xLI(x)〉0 . (5.55)

The contour C includes the imaginary segment CE. The result is analogous to the well-
known GML-formula of zero-temperature field theory. For factorization in the sense as
discussed above to occur, it is not sufficient that the contributions from the imaginary
segment CE in numerator and denominator cancel, because in the connected diagrams
the time integral still runs from ti to ti − iβ. However, equilibrium correlation functions
can only depend on time differences. Hence any dependence on ti should drop out and
this is exactly what one finds in explicit calculations.
The general argument to prove this goes as follows. Because equilibrium thermal

Green functions are analytic in the strip −β < Im t < 0, we may deform the contour
C3 = CE to first run back to some earlier time t

∗
i , then down an Euclidean path C

∗
3 , and
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t∗i > tf
<

t∗i − iβh̄ ti − iβh̄
>

Figure 5.6: Contour used in the proof of the factorization of Green functions

finally parallel to the real time back to ti − iβ. Because of the periodicity of thermal
Green functions, we may then write the internal time-integration of some propagator as

∫ β
0
dτ G13(ti−iτ,x, x′) =

∫ β
0
dτ G13(t∗i −iτ,x, x′)+ i

∫ ti
t∗i
dt [G11(x, x′)−G12(x, x′)] (5.56)

for arbitrary t∗i , which we now can take to −∞. On account of the cluster property (2.79),
the first term at the right-hand side may be dropped. Note that for the cluster property
to apply, at least one external real time in any connected Green function must be fixed on
either C1 or C2. The second term extends the time integration to the infinite closed time
path C1∪C2, first considered by Schwinger (1961) and Keldysh (1963). The cancelation of
the acausal parts of the time contour is a general feature of the time-path method, because
equal and opposite contributions will always come from the portions of the integration
contour C12 where t

′ > t. In practice this means that in the calculation of real-time Green
functions, the contours can taken to be inifnite, and all contributions from the Euclidean
contour simply may be ignored. This is the infamous decoupling theorem of thermal field
theory.
In the standard derivations of the Schwinger-Keldysh formulation, one arrives at this

closed time path by imposing an adiabatic condition, which is tantamount to ignoring the
contour CE . However, it may be pointed out that the imaginary contribution is essential
in order that the KMS condition be satisfied (except in the case where the fields in Eq.
(5.55) carry the same masses as the asymptotic fields in the usual sense of the vacuum
field theory). Furthermore, shrinking the contour C to the imaginary segment, formula
(5.55) reduces to the standard GML-formula of ITFT.
The point we want to emphasize here is that factorization is a property of the in-

teraction. For short-range interactions it may be expected that the (connected) Green
functions relax to zero on the scale of some finite relaxation time and factorization occurs.
However, special care should be taken in the case of zero-energy modes. In that case the
cluster property may not apply in the usual manner. Still in most models considered in
RTFT the factorization seems to be valid, since the results are in complete agreement
with ITFT calculations.
The closed path contour is by no means unique. A direct evaluation of real-time

Green functions is always possible if the time contour includes the real axis. The back
contour is more or less arbitrary. The simplest family of such ”real-time” contours is
depicted in Fig 5.6. The path goes from ti to tf along the real axis, drops vertically from
tf to tf − iσβh̄, returns parallel to the real axis to ti − iσβh̄, and ends at ti − iβh̄. By
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tin > tf

∨< tf − iσβh̄
tin − iβh̄ ∨

Figure 5.7: Time contours labeled by the parameter 0 ≤ σ ≤ 1.

varying 0 ≤ σ ≤ 1 an equivalence class of thermal field theories is generated. The choice
σ = 0 corresponds to the Schwinger-Keldysh formalism, and is in some sense the simplest.
Physical results should not depend on the choice of σ, and this can be shown to be the
case; Matsumoto, Nakano, Umezawa, Mancini, Marinaro (1983).
There is a final matter to be cleared up. In the real-time formalism one might ex-

pect to encounter certain ”pathologies”. In this context a pathology is a so-called pinch
singularity. Singularities of this type occur when an expression like

∆̃F ∆̃
∗
F =

1

k2 −m2 + iε

1

k2 −m2 − iε (5.57)

is integrated over k0. In the limit ε → 0 the integration is then ”pinched” between the
poles on each side of the real axis, and the integral cannot be assigned a well-defined
meaning. Another example of such an expression without meaning is

δ(k2 −m2)

k2 −m2 + iε
= − 1

2
δ(1)(k2 −m2)− iπ[δ(k2 −m2)]2 (5.58)

in which a product of delta-functions occurs with the same argument. With the real-time
propagators (5.31) there certainly seems to be a danger that such terms appear.
These problems are avoided by working with the regularized form of delta-functions

and their derivatives:

2πiδ(n)(x) =
( −1
x+ iε

)n+1
−
( −1
x− iε

)n+1
. (5.59)

If ε is kept finite, the pinch singularities are regularized in the intermediate stages of a par-
ticular calculation. It is then a general rule that potentially dangerous terms will cancel
after all relevant diagrams have been taken into account. This property has been shown
to be a consequence of the real-time Feynman rules by Niemi and Semenoff (1984), and
Matsumoto, Ojima, Umezawa (1984). The full matrix structure of the theory is instru-
mental in the proof. This explains why in early attempts at a real-time approach, in which
one only considered the propagator D̃11(k), one was faced with inadmissible singularities
of the pinch type. We like to add that it is a great advantage of the Keldysh formulation
that the cancellations are immediately evident, before any momentum integrals are done.
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Chapter 6

High-Temperature Dimensional
Reduction

The complicated nature of the dynamics of interacting thermal field theories has motivated
the search for a regime where these theories simplify in some sense. Conventional wisdom
has it that the infinite-temperature limit, or the critical region close to a phase transition,
provides such a regime, in that the four-dimensional field theory reduces to a three-
dimensional one. The argument here centers upon the fact that in weakly coupled field
theories, the temperature T can be used as expansion parameter to effectively isolate the
zero-frequency mode of the theory. This is done by integrating out all non-zero frequency
modes which, having large effective masses of order T in their propagators, are not plagued
by IR problems. Their effects can be treated as corrections, systematically calculable order
by order in perturbation theory, to an effective 3D theory of the remaining zero-frequency
mode. To the effective 3D-theory then various methods can be applied: ε expansion, exact
renormalization group, gap equations, Monte Carlo simulations, etc. Thus, a combination
of perturbative and non-perturbative methods is to be used to solve the problem.
Such a dimensional reduction would apply to static correlation functions at small

momenta k � T . This would simplify the description of finite-temperature phase tran-
sitions such as, for example, the chiral symmetry restoration transition in QCD, or the
deconfinement transition in pure gauge symmetries. Dimensional reduction also plays an
important role in the study of the electro weak phase transition.
Dimensional reduction (DR) in thermal field theory has attracted considerable interest

the last few years. The original idea of this construction, goes back to papers by Ginsparg
(1980), and by Appelquist and Pisarski (1981). DR was further developed by Farakos, Ka-
jantie, Laine, Rummukainen, and Shaposhnikov, in a study of the electroweak transition
and applied to hot QCD by Braaten and Nieto (1995). Different aspects of dimensional
reduction were studied by Landsman (1989), Jackiw and Templeton (1981) and Jakovac,
Kajantie, and Patkos (1994).
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Figure 6.1: Flat box in d-dimensions, of thickness h̄β.

6.1 Static dimensional reduction

The traditional description of DR is based on the Euclidean formalism. In this approach
the system is living in a box of d+ 1 dimensions. We assume that the extent in d spatial
dimensions is much larger than the scale of the physical correlations. The extent of
the Euclidean dimension is h̄β, with β = 1/T the inverse temperature. In this picture
dimensional reduction has a simple geometric origin: fluctuations with wavelength larger
than the extent in the Euclidean time-direction are “squeezed” in this direction and behave
like d-dimensional fluctuations. In other words for these fluctuations the system looks like
a “pancake”. If such fluctuations determine the physics of a phase transition then this
physics is effectively d-dimensional.
There is a close connection between DR and the classical limit. This rests on the

observation that the long-wave-length fluctuations at high T are just classical thermal
fluctuations. In Euclidean thermal field theory this is easy to see. One typically sums
over Matsubara frequencies, for example

T

h̄

∑
n

ω

ω2 + (2πnT/h̄)2
=

1

βh̄ω
+
2

βh̄

∞∑
n=1

ω

ω2 + (2πnT/h̄)2
(6.1)

=
1

2
+

1

eβh̄ω − 1 + . . . . (6.2)

The term 1/βh̄ω comes from the zero mode, whereas the first term in the last line is the
vacuum contribution. In the limit βh̄ω � 1 one may expand

1

2
+

1

eβh̄ω − 1 =
1

βh̄ω
+
1

12
βh̄ωk + . . . (6.3)

The series has a radius of convergence of βh̄ω = 2π, and for small expansion parameter
βh̄ω � 1 it is approximated extremely well by its leading term. Hence, since the first
term in (6.1) is equal to the n = 0 term in the Matsubara sum, DR amounts to taking
the classical limit n(ω) → 1/βh̄ω, dropping all sub-leading terms in the Bose-Einstein
distribution function n(ω). Thus, modes with h̄ω � T are described by a classical
statistical theory. For the photon gas, for example, this is the Rayleigh-Jeans region
of frequencies. The classical behavior of a field represented by these modes is what the
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dimensionally reduced theory describes. In quantum field theory this regime applies either
when T →∞ or at a second order phase transition as T → Tc and ω → 0.
In classical statistical mechanics we would make the identification: SE[φ]/h̄ = βE[φ],

where E[φ] is the energy functional of the classical field. This we recover indeed in the
classical limit h̄β → 0

1

h̄
SE [φ] = −1

h̄

∫ h̄β
0

dτ
∫
d3x L(−iτ,x))→ β

∫
d3xH , (6.4)

with H = (∂tφ)
2 − L the Hamiltonian density of the system.

Dimensional reduction rest on the fact that there is an energy gap in the energy
spectrum. This comes out even clearer when we consider the expansion of the Euclidean
field in Matsubara modes

φ(τ,x) =
√
T
∑
n

e−iωnτφn(x) . (6.5)

For the spatial correlator we get

〈φn(x)φ−n(0)〉0 =
∫ d3k

(2π)3
eik·x

k2 + (m/h̄)2 + ω2n
. (6.6)

The Matsubara frequencies act like temperature-dependent mass terms. Taking the vac-
uum mass m = 0, we may define a hierarchy of decreasing correlation lengths

ξ2n(T ) =
h̄

2πnT
. (6.7)

We then see that the contribution to the correlator from the exchange of a Fourier mode
with frequency ωn falls off at large r = |x| as

〈φn(x)φ−n(0)〉0 = e−r/ξn(T )

4πr
. (6.8)

Thus the only modes whose contributions do not fall off exponentially at distances r � h̄β
are the n = 0 modes of the bosons.
The sum n �= 0 in (6.1) can be interpreted as a sum over particles with masses 2πnT in

the perturbation theory of a 3D-dimensional field theory at temperature zero (Ginsparg
1980, Jourjine 1984). This suggests the strategy of integrating out the fermionic modes
and the nonzero modes of the bosons to get an effective theory for the bosonic zero modes.
This process is called “dimensional reduction”. It results in a 3D Euclidean field theory
with bosonic fields only, which reproduces the static correlators of the original theory at
distances r � h̄/T .

Problem 6.1
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Calculate the 3D-correlator

∫
d3k

(2π)3
eik·x

k2 + ξ−2
=
e−r/ξ

4πr
(6.9)

Hint: use a contour of integration that encloses the pole z = iξ−1.

In the vacuum theory this decoupling of “heavy” and “light” particles at all orders in per-
turbation theory is the content of the Appelquist-Carrazzone decoupling theorem (1975).
However, the 3D effective thermal field theory typically generates a dynamical mass gT
and the correction terms do not vanish in the high-T limit. As we will see this restricts
the validity of DR to a certain order in g.
Another obvious difficulty is of course the ultra-violet catastrophe: the total energy

diverges because of the contribution of the high-frequency modes. This means that the
dimensionally reduced theory can only be an effective theory for the “soft” modes with
h̄ω � T . The UV-divergences have to be regularized by quantum theory. However, one
expects the “hard” modes to behave perturbatively since the dominant IR behavior is
carried by the soft modes. It should be possible at least in principle to integrate out the
hard modes and to obtain an effective theory for the soft modes. The effect of the “hard”
modes is then to renormalize the couplings of this effective theory.
The point here is that renormalization schemes in this context are not just about

getting rid of UV divergences, but about defining a set of parameters with which to
describe the theory and to be able to calculate quantities of physical interest. In the case
of DR one should consider a T -dependent renormalization scheme.

6.2 Effective theory

The derivation of effective theories is one of the fundamental problems in statistical me-
chanics. At the basic microscopic level many-particle systems have nearly an infinite
number of degrees of freedom. In particular experimental situations one usually is in-
terested only in the behavior of a rather restricted set of observables. To mention a few
examples:
(i) Hydrodynamics; the relevant variables are the conserved currents Jµ(x) and con-

served energy momentum tensor T µν(x);
(ii) Phase transitions; the relevant variable is the order parameter such as there is
• the magnetization for ferromagnetic systems

m(x) = 〈∑
i

siδ(xi − x)〉 , (6.10)

• the condensate amplitude for superfluid systems

ϕ(x) = 〈φ(x)〉 , (6.11)
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• the electron pair amplitude for superconducting systems
∆(x) = 〈ψ↓(x)ψ↑(x)〉 . (6.12)

In dimensional reduction the relevant variable is the zero mode Φ(x) = φ0(x) of the
Euclidean field expanded in Matsubara modes

φ(τ,x) =
√
TΦ(x) +

√
T
∑
n �=0

e−iωnτφn(x) . (6.13)

The reduction of the description from the microscopic degrees of freedom to a smaller set
of variables may be pictured as a projection of the full microscopic theory onto a subspace
of relevant variables. The projector in DR is

Φ(x) = Pφ(τ,x) =
√
T

h̄

∫ βh̄
0

dτ φ(τ,x) . (6.14)

Factors h̄ are written out explicitly to facilitate the discussion of the classical limit. In

units with kB = 1, c = 1 the mode fields φn(x) have the dimension
√
1/L.

When a relevant variable or order parameter has been identified, the effective the-
ory may be derived by the following general reasoning (Fukuda Kyriakopoulos, 1975;
O’Raifeartaigh, Wipf, Yoneyama, 1986). Let us consider in particular the generating
functional of the scalar theory

Z[j] =
∫
Dφ(τ,x)e−SE [φ]+jφ , (6.15)

where j(x) is an static external source that couples to the zero-mode of the field

jφ =
1

h̄

∫ βh̄
0

dτ
∫
d3x j(x)φ(τ,x) ≡ J · Φ , (6.16)

J · Φ ≡
∫
d3xJ(x)Φ(x) , (6.17)

with J(x) =
√
βj(x). From this generating functional we get the static correlation func-

tions by functional differentiation

〈Φ(x1) . . .Φ(xN )〉 = δN logZ[J ]

δJ(x1) . . . δJ(xN)

∣∣∣∣∣
J=0

; . (6.18)

We now define the so-called constrained effective action (CEA) as

e−U [Φ] = N
∫
Dφ(τ,x) δ(Φ−Pφ) e−SE [φ] . (6.19)

It may be regarded as a probability density for the system to be in a state described by
the static field Φ(x), as it is the sum of the probabilities of the system being in each of
the microscopic states that are allowed by the constraint Φ− Pφ = 0; N is an arbitrary
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normalization factor. Directly from the definition of the CEA we may write the generating
functional as a functional over the static field

Z[J ] = N
∫
DΦ(x) e−U [Φ]+J ·Φ (6.20)

from which the static correlation functions are calculated as averages

〈Φ(x1) . . .Φ(xN)〉 = 1

Z

∫
DΦ(x)Φ(x1) . . .Φ(xN) e−U [Φ] (6.21)

with probability density ∼ exp−U [Φ].
We now rewrite the delta-function in (6.19) as an integral

δ(Φ− Pφ) ∼
∫ ∞

−∞
dJ exp−J · (Φ− Pφ) . (6.22)

This is a generalized Fourier transform with a contour of integration in the complex
plane which is irrelevant for the algebraic considerations which follow. Substituting into
the definition of CEA (6.19), and taking the definition of the generating functional into
account, we get

e−U [Φ] = N
∫
DJ e−J ·Φ elogZ[J ] . (6.23)

where Z[J ] is the generating functional (6.15). Thus, the CEA is a Fourier transform
of the ordinary generating functional. In the thermodynamic limit, the integral may be
calculated by expanding around the stationary point

δ logZ[J ]

δJ(x)
= 〈Pφ(x)〉J = Φ(x) . (6.24)

Let us call the solution of this mean-field equation J0(x). Then in the infinite volume
limit the result is dominated by the mean-field-approximation

lim
V→∞

U [Φ] = J0 · Φ− logZ[J0] ≡ Γ[Φ] . (6.25)

The right-hand-side may be recognized as the Legendre transform by which one defines
the effective action in field theory. Hence, the constrained effective action and the effective
action are one and the same in the mean-field approximation.
As is discussed in many textbooks, the functional expansion coefficients of the effective

action are the vertex functions

Γ[Φ] =
∑
N

1

N !

∫
d3x1 . . . d

3xN Γ
(N)(x1, . . . ,xN)Φ(x1) . . .Φ(xN ) . (6.26)

Diagrammatically, the vertex functions are represented by one-particle irreducible (1PI)
diagrams, that is, diagrams that cannot become disconnected by cutting any single line.
The 1PI-diagrams are amputated meaning that there are no propagators on the external
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lines. An elegant proof has been given by Brandenberger (1985) with the help of the
identity

1

a
logZ[J ] = log

∫
DΦe− 1

a
(Γ[Φ]−J ·Φ) (6.27)

which holds true to lowest order in the parameter a. Indeed, for small a the extremum of
the exponential at the value Φ0(x), which is the solution of the equation

δΓ[Φ]

δΦ(x)
= J(x) , (6.28)

becomes very sharp and we may apply the mean-field (stationary-phase) approximation:

1

a
logZ[J ] � 1

a
(J0 · Φ0 − Γ[Φ0]) . (6.29)

This is precisely the inverse of the Legendre transform in (6.25).
The proof now proceeds by noting that the effective action Γ[Φ] may be regarded as

the action of a new effective theory with vertices Γ(N), N ≥ 3 and inverse propagator
[
G(2)(x,x′)

]−1
= Γ(2)(x,x′) = ∆−1(x,x′) + Π(x,x′) , (6.30)

where ∆ is the free propagator of the theory and Π the self energy defined by Γ(2). For
this new theory we can set up a perturbation theory in the usual manner, except that
now

• every vertex Γ(N) is multiplied by the factor 1/a, and
• every propagator G(2) is multiplied by a.

Therefore, to any given order in perturbation theory every amputated diagram is multi-
plied with the factor aI−V , with I = # of internal lines, and V = # of vertices. With the
help of the Euler formula L− I + V = 1, the number of vertices and internal lines can be
related to the number of loops L, which may be defined as the smallest number of lines in
a diagram that must be removed to make it a tree-graph, that is, a graph without loops.
We thus find that any diagram is multiplied by aL−1, which means that the expansion in
a is also an expansion in the number of loops. In particular L = 0 corresponds to the
mean-field approximation.
Now, to lowest order in a, the right-hand-side of (6.27) consists of a sum of tree

diagrams in terms of the full vertices Γ(N), N ≤ 3 and propagator G(2). According to
the theorem, this sum is equal to the sum of all connected diagrams in terms of the free
propagator and bare vertices. Hence, the vertex functions may be identified with the
1PI-diagrams of the original theory.

Problem 6.2

77



Show by functional differentiation of (6.28) that the full propagator satisfies the
reciprocity relation

Γ(N)(1, 2) =
δ2Γ[Φ]

δΦ(1) δΦ(2)
=

[
δ2 logZ[J ]

δJ(1) δJ(2)

]−1
=
[
G(2)(1, 2)

]−1
(6.31)

and thus is the inverse of Γ(2).

6.3 Phase transitions

The effective action obtained by the Legendre transform (6.25) may be seen as thermo-
dynamic potential. By analogy with a magnetic system, one may think of the external
source as a magnetic field, J ∼ B, and of the variable Φ as a magnetization Φ ∼M . The
Legendre transform then defines the Gibbs free energy as a functional of the magnetiza-
tion, so that it satisfies (6.28). The most stable state is the minimum of Γ[Φ]. If J = 0
the Gibbs free energy reaches an extremum

δΓ[Φ]

δΦ(x)
= 0 (6.32)

at the corresponding value of Φ. If this equation has a non-trivial solution this signifies
that a symmetry of the underlying theory is spontaneously broken. It is often very useful
to write for Γ[Φ] some approximation

Γ[Φ] =
∫
d3x

[
1
2
α(T )(∇Φ)2 + 1

2
µ(T )Φ2 + 1

4
λ(T )Φ4

]
, (6.33)

where the parameters α(T ), µ(T ), λ(T ) which may depend on the temperature are treated
as phenomenological input. The particular expansion (6.33) is called the “Ginzburg-
Landau (GL)” model which is very successful in describing second-order phase transitions.
In the following we will assume that the states are translationally invariant. Then

for each possible state, the solution will be a constant independent of the coordinate x.
Moreover we may assume that Γ, since it is a thermodynamic potential, is extensive, that
is, it is proportional to the volume, and we may write

1

V
Γ[Φ] = Veff(Φ) . (6.34)

This is the effective potential. The extremum condition then reduces to an ordinary
differential equation

∂Veff(Φ)

∂Φ
= 0 (6.35)

Each solution is a translationally-invariant state with J = 0. Equation (6.25) then implies
that Veff is equal to the thermodynamic potential of that state: Veff = Ω. Non-trivial
solutions of equation (6.35) signify the occurrence of phase transition. For example, in
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the case of a ferromagnet this equation has a non-trivial solution for temperatures below
the Curie temperature.
For translationally invariant states, the GL-model reduces to the phenomenological

Landau theory of second-order phase transitions. The basic assumption is that close to
the critical temperature it is sufficient to expand the effective potential to fourth order

Veff(Φ) = Veff(0) + 1
2
µ(T )Φ2 + 1

4
λ(T )Φ4 . (6.36)

This effective potential has a minimum determined by

µ(T )Φ + λ(T )Φ3 = 0 . (6.37)

To have a phase transition, the coefficient µ(T ) must flip sign at the critical temperature
Tc: µ(Tc) = 0, and λ(Tc) > 0. In the phase where µ(T ) is positive, the effective potential
is strictly convex while in the other regime it has the shape of a double-well potential

with degenerate minima at Φ0 = ±
√
−µ/λ; in the absence of an external source both

have the same free energy. Introduction of a small external field lifts the degeneracy and
the so-called Landau function

L(Φ, J) ≡ Γ[Φ]− J · Φ (6.38)

has a unique minimum. In that case the symmetry of the action Φ→ −Φ is broken, and
the system is said to be in a broken (asymmetric) phase.
Comparing the Landau-model (6.36) with the general expansion of the effective action

we see that the Landau coefficients may be identified with the vertex functions integrated
over all coordinates and divided by a volume factor:

V Γ̃(N)(0) ≡
∫
d3x1 . . . d

3xN Γ
(N)(x1, . . . ,xN ) . (6.39)

That is, Γ̃(2)(0) = µ(T ) and Γ̃(4)(0) = 6λ(T ). Hence by calculating these vertex functions
one can in principle determine the critical temperature. For example, if one calculates the
one-loop expression in thermal field theory, one finds the thermal mass ∼ T 2. Hence, if one
starts out with a negative bare mass, at a certain temperature a symmetry restoring phase
transition must take place as first noticed by Dolan and Jackiw (1973). This observation
has important implications for cosmology because it implies that any symmetry that is
broken at present, must eventually be restored if one goes back to early enough times.

6.4 λφ4-model

To proceed with the explicit calculation of the constrained effective action (CEA) we
consider the λφ4 model at temperature T . On the Euclidean contour we have

SE [φ] =
∫ βh̄
0
dτ
∫
d3x [ 1

2
(∂τφ)

2 + 1
2
(∇φ)2 + 1

2
m2φ2 + 1

4!
λφ4] . (6.40)
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The coupling constant λ has dimensions of inverse length times inverse energy. Therefore,
the dimensionless expansion coefficient that may be used in the perturbative expansion is
g2 ∼ λh̄ which is assumed to be small g � 1. Expanding into Matsubara modes, we may
write the action as

SE =
∫
d3x

[
1
2

∑
n

φn(x)(ω
2
n −∇2 +m2)φ−n(x)

+
λT

24

∑
n

δ(n1 + n2 + n3 + n4)
4∏
j=1

φnj
(x)


 , (6.41)

where the energy is conserved by the Kronecker delta; δ(n) = βδn,0. The object is to
integrate out the ”heavy” modes with n �= 0 to obtain the CEA:

e−U [Φ] = N
∫
Dφ δ(Φ− Pφ) e−SE [φ]

= N
∫
Dφn �=0 e−SE [Φ,φn�=0] . (6.42)

The action may be decomposed into three contributions

SE[Φ, φn �=0] =
∫
d3x[H + L′

0 + L′
I ] , (6.43)

where
H(Φ) = 1

2
Φ(x)(−∇2 +m2)Φ(x) + 1

4!
λΦ4(x) (6.44)

is the Hamiltonian density of the static field. The non-static modes appear in the two
other contributions with a free Lagrangian of the massive modes

L′
0 =

1

2
T
∑
n

′ φn(x)(ω2n −∇2 +m2)φ−n(x) (6.45)

and an interaction part

L′
I =

λ

24
T
∑
{n}

′ δ(n1 + n2 + n3 + n4)
4∏
j=1

φnj
(x) . (6.46)

In the sum
∑

{n} ′ the term with all n’s equal to zero is to be omitted. The last two
contributions look very much like a zero-temperature action in terms of an infinite number
of massive fields φn(x), with a temperature dependent mass ωn = 2πnT , which goes to
infinity as T → ∞. For this reason they are often called ”heavy” modes in contrast to
the ”soft” modes Φ(x). We will use the following nomenclature (see also Kajantie, Laine,
and Rummukainen and Shaposhnikov, 1996):

• heavy/hard modes: fields with mass and/or momentum ∼ T

• soft modes: fields with mass and/or momentum ∼ gT

• light modes: fields with mass and/or momentum g2T or less with coupling constant
g2 ∼ λh̄.
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The CEA for the static modes appears as

e−U [Φ] = e−H
∫
Dφn �=0 exp−

∫
d3x (L′

0 + L′
I) , (6.47)

with the Hamiltonian H =
∫
d3H. The crucial step is now that the heavy modes interact

weakly with each other and with the light modes, when g2 � 1. Therefore they can be
integrated out with the use of perturbation theory, so that U [Φ] containing only the zero-
mode can be constructed. From the Lagrangian we immediately read off the propagator
for the non-static modes

∆̃(ωn,k) =
1

ω2n + ω
2
k

(6.48)

which is just the Matsubara propagator.
To facilitate the perturbative calculation we introduce the following notation: the field

Φ, n = 0 is indicated by a dashed line, and the sum over fields φn, n �= by a solid line.
The interaction term in (6.46) are then represented diagrammatically by three interaction
vertices

L′
I =

1

4
+
1

3!
+
1

4!
(6.49)

The CEA of the effective theory may than be calculated from

U [Φ] = H [Φ] + 1
2
Tr

′
log ∆̃−1 + 〈e−

∫
d3x L′

I − 1〉con , (6.50)

where the second term at the right-hand side is the partition function of the non-interacting
non-static mode:

Z ′
0 =

∫
Dφn �=0 exp−

∫
d3xL′

0 = exp
1
2
Tr log ∆̃ . (6.51)

To compute Γ we need to consider all graphs with all external lines corresponding to
the n = 0 mode and all the internal lines corresponding to the n �= 0 propagator. No
IR-divergences arise because no static mode is allowed on the internal lines. Therefore
one may expand in powers of m2/T 2.
The first two terms at the right-hand side of (6.50) are the well known contributions

of the tree-graphs and the one-loop graph

© = T
∑
n �=0

∫
d3k

(2π)3
log(ω2n + k2 +m2) . (6.52)

The calculation of the last term in (6.50) proceeds in the usual manner, except that only
1PI diagrams are present, because the field φn �=0 does not contain the n = 0 mode. Hence
we may write the CEA as a sum of two terms

U [Φ] = H(Φ] + Γ
′
[Φ] . (6.53)

The second term is the effective action as usually defined, but calculated for non-static
modes. The vertex functions as defined in (6.26) determine the corrections to the mass
and the coupling constant of the Hamiltonian of the static theory.
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6.5 Problems with DR

The above results for the CEA of the λφ4-model are formally exact. However, it quickly
turns out that in practical calculations three problems arise (Braaten and Nieto, 1996).
To begin with, the UV divergences associated with the original 4D theory can readily
be removed by standard renormalization prescriptions. However, the 3D effective theory
also has UV-divergences which must be regularized by introducing an UV-cutoff Λ. The
UV-divergences of the effective theory includes power UV-divergences of the form Λp, p =
1, 2, . . .. Since the full theory is renormalizable, power divergences of the form Λp from
loop integrals must be completely canceled by terms proportional to Λp in the vertex
functions of the static part. Moreover, the power divergences depend on the regularization
procedure and are simply regularization artefacts. For this reason it is convenient to use
dimensional regularization in which momentum integrals are analytically continued to
d− 3ε spatial dimensions ∫

d3k

(2π)3
→ ν2ε

∫
ddk

(2π)d
(6.54)

with ν an arbitrary momentum scale. Power divergences are set equal to zero in this
method, because integrals without momentum scale are zero by definition in dimensional
regularization.
In contrast, logarithmic UV divergences log Λ/m from a loop integral must match

onto a logT/Λ term in one of the parameters of Γ[Φ] in order for the Λ-dependence to
cancel. Thus, the logarithmic divergences have real physical significance. Although these
logarithms cancel also, the problem is that in the effective theory they are hidden in
complicated integrals. To have a finite theory the Λ-dependent counter terms must be
added explicitly.
Let us take a detailed look at the simple example of the one-loop self energy. First,

the static contribution in the high-T limit is (see section 3.4):

Πn=0 = 1
2
λT

∫
d3k

(2π)3
1

ω2k
=

1

4π2
λΛT − 1

8π
λmT . (6.55)

The linear divergence indicates that the integration in the static mode is not dominated
by the low-momenta as one perhaps would have expected.
The contribution of non-static modes is

Πn �=0 = 1
2
λ
∫

d3k

(2π)3
1

2ωk
[1 + 2n̄(ωk)] , (6.56)

where n̄(ωk) is the Bose-Einstein distribution function with the zero mode subtracted

n̄(ωk) =
1

eβh̄ωk − 1 −
1

βh̄ωk
� βh̄ωk + . . . (6.57)

As already explained in the introduction, the static terms are classical. Indeed, in the
classical limit we have n(ωk) → T/h̄ωk. The one-loop contribution is multiplied by h̄

82



which drops out. This is not surprising as the high-temperature limit ∼ classical limit,
because in both cases the dimensionless small parameter is βh̄ωk → 0. For mass m = 0
the finite-T part is easily evaluated; see section 3.4.

Πn �=0 =
λT 2

24h̄
+ 1

2
λh̄
∫

d3k

(2π)3

(
1

2|k| −
T

h̄|k|2
)
. (6.58)

The first term is the thermal mass, and we see explicitly that the thermal mass comes
from the non-static modes. The quadratic- and linear divergences are zero in dimensional
regularization. However we will use a finite cutoff and then get:

Πn �=0 =
λT 2

24h̄
− 1

4π2
λΛT , (6.59)

which, of course, has the same divergence as the static term, as it should, because the
total result is the thermal mass.
We conclude that at one loop the static theory acquires a thermal mass of order gT ,

so that the static mode is no longer massless. By the restriction to non-static modes,
n→ n̂ = n− T/h̄ωk, the thermal mass is accompanied by a linear divergence ∼ ΛT that
acts as a counter term for the same linear divergence in the static theory. Effectively the
result is that the classical divergence is replaced by the thermal mass. In fact by choosing
the cutoff equal to Λ = T h̄ the non-static contribution disappears altogether and the mass
term in classical theory is replaced by the thermal mass. Hence, what we learn from this
discussion is that the effective classical theory must incorporated the thermal mass.

6.6 High-temperature behavior

The one-loop thermal mass MT is proportional to T
2. The origin of this behavior is

rather obvious. Classically, the loop integral would be quadratically divergent, but the
Bose-Einstein factor cuts the integral off at |k| ∼ T , so that the quadratic divergence is
translated into a T 2 behavior. That is, the leading contribution in T comes from loop
momenta of order T . In the nomenclature of Braaten en Pisarski this is called a ”hard
thermal loop” (HTL) contribution.
In λφ4-theory, the thermal mass is the only HTL contribution. Basically the reason is

that a 3D λφ4 theory is super-renormalizable, that is, only the one- and two-loop integrals
are UV-divergent. Let us, for example, calculate the four-point vertex function at zero
momentum

Γ(4) = 1
2
λ2T

∑
n

∫
d3k

(2π)3
1

(ω2n + ω
2
k)
2
. (6.60)

Again we consider the zero-mode and non-zero modes separately. The zero-mode con-
tributes in the high-temperature limit

Γ
(4)
n=0 =

1

16π
λ2
T

m
, (6.61)
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and the sum over the non-zero modes

Γ
(4)
n �=0 =

1

16π2
λ2h̄ log

(
T

mh̄

)
. (6.62)

Both expressions are finite, but they blow up for m → 0. Also in this limit two-loop
diagrams dominate over one-loop diagrams. Consider for instance a self energy insertion
on a propagator line in the four-point vertex. It it can be estimated to be of order

Γ(4),2L ∼ Γ(4),1L × λT 2

m2h̄
. (6.63)

We see that when λT 2/m2h̄ >> 1, the two-loop contribution dominates over the one-loop
one. Hence, the perturbation expansion is not valid. This is not unexpected since we have
encountered the same IR-problem when dealing with the thermal mass. The solution to
this problem has been discussed in section 3.4: daisy diagrams have to resummed. This
amounts to the replacement of the vacuum mass by the thermal mass m→MT .
In the resummed theory there is, besides λ, another expansion parameter, namely:

λT/MT ∼ λ
1
2 ∼ g. (6.64)

For instance, we see this expansion parameter appear in (6.60) compared with the tree-
level contribution λ. More generally, the occurrence of this expansion parameter can be
seen as follows. We consider a diagram and add a loop to it, while we keep the number
of external lines fixed. This brings in an extra interaction λ, an extra integration T

∫
d3k,

and two extra propagators (k2+M2
T )

−2. Provided the integrations give a finite result, the
typical scale of the momentum is given by the mass MT . The total result is the expansion
parameter λT/mT .
An important implication is that in the resummed theory orders m/T do not vanish,

but are replaced byMT /T →∼ g. This is of direct relevance for the validity of dimensional
reduction, because it means that the zero modes do not completely decouple from the
heavy modes ∼ 2πT , only to a certain order in the coupling g. Still for g � 1 the scheme
can be put to work.
This analysis may be extended to higher-order vertex functions. We consider the one-

loop contributions, which are of order gN . The static propagators have the IR-cut off
MT ∼ gT , whereas the scale for the non-static propagators is set by 2πT . Let V = # of
vertices, N = # of external legs, I = # of internal lines, and L = # of loops in a given
diagram. The superficial degree of divergence of the diagram is then D = 3L− 2I. Each
loop summation over the Matsubara frequencies yield a factor T. If power UV-divergences
are subtracted as part of the regularization scheme, the finite part must have a coefficient
that is proportional to MD

T in the static case and TD in the latter. We are thus led to a
characterization of the 1PI-graphs by their order in g and T :

Γ
(N)
n=0 ∼ gNTMD

T = λ
N T

MN−3
T

N ≥ 3 , (6.65)

Γ
(N)
n �=0 ∼ gNTD+1 = λN

1

TN−4 N ≥ 3. (6.66)
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where we used the well known relationships L = I−V +1, N = 4V −2I. SinceMT ∼ gT ,
the effect of the replacement m→ MT is that

Γ
(N)
n=0 ∼ g3

1

TN−4 N ≥ 3 . (6.67)

The static higher orders are suppressed by the temperature, but not by the coupling con-
stant, in contrast to the non-zero modes. There is no need to replace the vacuum mass
in the propagator for the non-zero modes. This will only give subleading corrections,
since g2T 2 � ω2n �=0 ∼ T 2. In a systematic expansion the resummation of thermal correc-
tions to the mass is only necessary in the zero-mode propagator, whereas the hard-mode
contributions are perturbatively calculable without resummation;

6.7 Matching

Let us summarize what has been achieved so far. By integrating out the non-static
modes, we have derived an effective theory that in principle allows us to calculate the
static correlation functions of the full theory. The basic identity is:∫

Dφe−SE [φ]Pφ(x1) . . .Pφ(xN) = N
∫
DΦe−U [Φ]Φ(x1) . . .Φ(xN) , (6.68)

which is an exact consequence of dimensional reduction. In principle the CEA U [Φ]
still contains all necessary information about the system sufficient to calculate static
correlation functions to any desired degree of accuracy. However this has a price, namely,
U [Φ] is defined by an infinite sum of vertex functions, which are moreover non-local in
general. Therefore, the whole scheme of DR is useful only if there is some approximation
scheme that allows us to simplify and truncate the infinite sum. The approximation we
could consider is a local effective theory

U [Φ] =
∫
d3xLeff , (6.69)

where
Leff = 1

2
α(T )(∇Φ)2 + 1

2
µ(T )Φ2 + 1

4
λ(T )Φ4 + . . . , (6.70)

includes all local terms that can be built from the static fields consistent with the symme-
tries of the system. The parameters α(T ), µ(T ), λ(T ), . . . and all other parameters that
one could introduce, depend on the temperature, the coupling constants of the underlying
theory, and some UV-cut off Λ.
We have already seen that higher-order loop corrections are small. Hence, as the

simplest approximation, the parameters in the effective Lagrangian are determined by
the one-loop corrections to the vertex functions, in the small-momentum limit:α(T ) = 1,

µ(T ) = Π̃(0,k)
∣∣∣
k=0

+O(λ2) = λT 2

24
, (6.71)

λ(T ) = Γ̃(4)(0,k1,k2,k3)
∣∣∣
k=0

+O(λ2) = λ . (6.72)
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Figure 6.2: Static an non-static tadpole diagrams

Now it was observed by Landsman (1989) that an effective theory constructed in this way,
does not completely reproduce the underlying theory, if one confines oneself to a renor-
malizable effective theory. Moreover, the results depend on the renormalization scheme.
However, this does not imply that DR fails, but simply means that non-renormalizable
operators must be included in Leff in order to extend the accuracy to higher orders of
λ. The resulting theory is non-renormalizable and has in general infinitely many para-
meters. These parameters should be chosen such thar the effective theory reproduces the
long-distance behavior of the original theory. This procedure is known as matching, that
is, compute the corresponding quantities in the effective theory, and demand that they
match.
Let us now discuss how matching works in practical applications. We shall outline how

one determines µ(T ) and λ(T ) at the two-loop level (Andersen 1997). We must start by
determining what “matching” conditions we are going to use. In principle, there should be
as many matching conditions as there are unknown constants. It seem natural to restrict
the discussion to the effective parameters to α(T ), µ(T ), λ(T ) (then the 3D Lagrangian
is super-renormalizable) and to match the simplest Green functions that appear in the
3D theory:

Π̃(0,k)
∣∣∣
k=0

= Π̃eff(k)
∣∣∣
k=0

+O(λ3) , (6.73)

∂|k|2Π̃(0,k)
∣∣∣
k=0

= ∂|k|2Π̃eff(k)
∣∣∣
k=0

+O(λ3) , (6.74)

Γ̃(4)(0,k1,k2,k3)
∣∣∣
k=0

= Γ̃
(4)
eff (k1,k2,k3)

∣∣∣
k=0

+O(λ3) . (6.75)

This yields three equations for three coefficients α(T ), µ(T ), λ(T ).
At the one-loop level in the full theory, there is only one contributing diagram, namely

the tadpole, which may be split into a static and non-static part

Π̃(k) = k2 + Π̃n=0(k) + Π̃n �=0(k) . (6.76)

We have already calculated the last term in the high-T limit.

Π̃n �=0(k) =
λ

24
T 2 − λ

(2π)2
ΛT . (6.77)

On the other hand, in the effective theory the corresponding expression is

Πeff(k)|k=0 =

��
(6.78)
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� �Figure 6.3: The two-loop graphs for the two-point function

The demand that these two expressions are the same, determines α(T ), µ(T ), λ(T ) to
one-loop order:

µ(T ) =
λT 2

24
+O(λ2) , (6.79)

λ(t) = λ+O(λ2) . (6.80)

Hence, to one-loop order the matching procedure, coincides with the DR prescription
(6.72) for the coupling constant as found in the original papers on DR.
At 2-loop level things become more interesting. One then encounters the essential

non-locality of the theory. As we will see, a non-local vertex has to be incorporated in
the theory. First we write down all that diagrams that contribute to the self energy in
the full=DR theory; see Fig 6.3. The static modes are indicated by a dotted line and
non-static modes by a solid line. This has to be matched to the two-loop graphs of the
effective theory.
The diagrams with only light modes, cancel against the corresponding graphs in the

effective theory. To second order one needs to include the loop-corrections to the four-
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� �Figure 6.4: The two-loop graphs for the two-point function in the effective theory

point functions.

Γ̃(4)(0,k = 0) = + , (6.81)

Γ̃
(4)
eff (k = 0) = . (6.82)

Hence, to this order the matching of the coupling constant reduces to

λ(T ) = = + . (6.83)

This effective vertex has been introduced by Jakovac (1997).
Now the matching equations have to be solved for µ(T ). The most interesting parts of

the DR vertex function are the setting sun diagrams. However they turn out to be zero in
dimensional regularization. This means that we can ignore the non-local part. The final
result is that we have the following matching relation for the mass (see also Braaten and
Nieto, 1996):

µ(T ) = 1
2
λTν2ε

∑
n �=0

∫
ddk

(2π)d
1

ω2n + ω
2
k

− 1
4
λ2ν4ε

∑
n �=0

∑
l �=0

∫ ddk

(2π)d

∫ ddq

(2π)d
1

ω2n + ω
2
k

1

(ω2l + ω
2
q )
2
. (6.84)

Apart from zero-temperature renormalizations one finds:

µ(T ) =
λT 2

24

{
1 +

λ

16π2

[
log

Λ

4πT
− γE + 2 + 2ζ

′
(−1)
ζ(−1)

]}
. (6.85)
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The logarithmic Λ-dependence acts as a counter term and neutralizes logarithmic UV-
divergences from loop integrals in the effective theory, so that the effective theory is cut-off
independent to this order. We note that the IR-divergences that arise in the underlying
theory precisely match those in the effective theory. This is a general feature of the
matching procedure.
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Appendix

Ideal Bose and Fermi gas

We review some properties of non-interacting Bose and Fermi gases consisting of particles
with energy εk. The general expression for the thermodynamic potential is

Ω = η
∫

d3k

(2π)3
log

[
1− ηe−β(εk−µ)

]
, (6.86)

where µ is the chemical potential and η = 1 for bosons and η = −1 for fermions. After
an integration by parts we get

Ω = − 1

6π2

∫ ∞

ω0

dω k3n(ω) (6.87)

where ω0 = β(ε0 − µ) is the value of the exponent for |k| = 0, and

n(ω) =
1

eω − η (6.88)

is the Fermi or Bose equilibrium distribution function.
For m = 0 the thermodynamic potential (6.87) can be expressed in terms of the

standard Bose or Fermi intergrals generally defined by

Fn(y) =
1

Γ(n)

∫ ∞

0

xn−1

ex−y − η . (6.89)

Here Γ(n) is the gamma function with the properties Γ(n + 1) = nΓ(n) and Γ( 1
2
) =

√
π.

The integrals satisfy the recursion relation

dFn(y)

dy
= Fn−1(y) . (6.90)

For the case βµ = y = 0 they can be evaluated analytically with the help of the formulae

∫ ∞

0

xn−1

ex − 1 = Γ(n)ζ(n), n > 1 (6.91)

∫ ∞

0

xn−1

ex + 1
= (1− 21−n)Γ(n)ζ(n), n > 0 (6.92)

Values of the zeta function that often occur are: ζ(2) = π2/6, ζ(3) = 1.202, ζ(4) = π4/90.
The thermodynamic potential for massless bosons with one degree of freedom and

µ = 0 is

Ω = − T 3

6π2h̄3

∫ ∞

0

x3

ex − 1 =
π2T 3

90h̄3
. (6.93)
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From this equation we get the pressure as P = −TΩ and the energy density E = 3P .
The particle density is

N =
∫ d3k

(2π)3
1

eβh̄|k| − 1 =
T 3

π2h̄3
ζ(3) , (6.94)

which gives for the entropy density S = 4E/3T � 3.6N .
Let us now turn to massless fermions. Taking particles an anti-particles into account

one has

Ω = − T 3

π2h̄3
[F4(y)− F4(−y)] . (6.95)

Remarkably, this difference, and similar combinations

Sn = Fn(y) + (−1)nFn(−y) , (6.96)

can all be computed exactly. For n = 1 we have

F1(y) = log(1 + e
y) = y + log(1 + e−y) , (6.97)

and thus S1(y) = y. If one now uses the recursion relation (6.90), one may calculate
subsequent orders by integration:

2!S2 = y2 + 1
3
π2 , (6.98)

3!S3 = y3 + π2y , (6.99)

4!S4 = y4 + 2π2y2 +
7π4

15
. (6.100)

(6.101)

The last result leads to:

Ω = − T 3

6π2h̄3

[
7π4

60
+
π2µ2

2T 2
+
µ4

4T 4

]
. (6.102)

The particle density may be calculated by differentiation with respect to y.

Appendix

Gaussian Integrals

Gaussian integrals have some important applications. One of those is that they form the
basis of perturbation theory in quantum field theory. In this appendix some algebraic
identities about Gaussian integrals are briefly described for a finite number of integration
variables.
Throughout the appendix the Einstein summation convention is used, that is, sum-

mation is understood to be carried out over repeated index symbols.
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A general Gaussian integral has the form:

Z(j1, . . . , jN) =
∫ ∞

−∞

N∏
i=1

dφi exp
(
−1
2
φiAijφj + jiφi

)
, (6.103)

in which A is a symmetric positive definite matrix, that is, its eigenvalues λi satisfy
Re(λi) ≥ 0, λi �= 0.
To calculate Z one first determines the maximum contribution of the integrand to the

integral from the extremum of the exponent:

d

dφk

(
1

2
φiAijφj − jiφi

)
= 0 . (6.104)

Using the solution of this equation, we shift integration variables according to:

φi = (A
−1)ijjj + yi . (6.105)

The integral (6.103) now becomes:

Z(j1, . . . , jN) = Z[0] exp
1

2
ji(A

−1)ijjj , (6.106)

where the Gaussian integrals

Z[0] =
∫ ∞

−∞

N∏
i=1

dyie
− 1

2
yiAijyj (6.107)

can be calculated by diagonalizing the matrix A. One finally obtains:

Z(j1, . . . , jN ) = (2π)
N
2 (detA)−

1
2 exp

1

2
ji(A

−1)ijjj (6.108)

The last expression can be used to calculate any Gaussian average:

〈φk1φk2 . . . φkl
〉 ≡ N

∫ ∞

−∞

(
N∏
i=1

dφi

)
φk1φk2 . . . φkl

e−
1
2
φiAijφj (6.109)

in which the normalization N is chosen in such a way that < 1 >= 1, i.e. N−1 = Z(0).
Consider the general Gaussian integral (6.103). Repeated differentiation with respect to
the sources leads to the identity:

〈φk1φk2 . . . φkl
〉 = (2π)−

N
2 (detA)

1
2
∂

∂jk1

∂

∂jk2
· · · ∂

∂jkl

Z(j1, . . . , jN )

∣∣∣∣∣
j=0

. (6.110)

Insertion of the explicit form (6.108) then gives

〈φk1 . . . φkl
〉 =

∂

∂jk1
· · · ∂

∂jkl

e
1
2
ji(A−1)ijjj

∣∣∣∣∣
j=0

(6.111)

=
∂

∂jk1
· · · ∂

∂jkl

1

N !

1

2N

(
ji(A

−1)ijjj
)N

, (6.112)
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with l = 2N ; the number of variables and indices must be even. In principle the differ-
entiations yield 2N ! different terms. However, since the matrix A is symmetric, 2N of
these terms are equal. Furthermore, we are differentiating a monomial of order N , which
implies that there are N ! permutations that also yield the same terms. Hence the total
number of different terms is (2N !)/2NN ! = (2N − 1)!!. This is simply the number of all
possible pairings of l = 2N indices. Thus one finds:

〈φk1 . . . φkl〉 =
∑

pairings of

(k1,...,kl)

A−1
kp1kp2

. . . A−1
kpl−1

kpl
. (6.113)

The rule is:

• consider all possible pairings of the indices k1, . . . , kl (l even),
• associate to each pair kpkq a matrix element of the matrix A−1

Identity (6.113) states that all moments of a Gaussian distribution can be expressed in
terms of the second moment alone. Indeed, consider the second moment

〈φk1φk2〉 =
(
A−1)

k1k2
. (6.114)

It is simply equal to the inverse of the matrix A. Therefore an alternative way of writing
(6.113) is

〈φk1 . . . φkl〉 =
∑

pairings of

(k1,...,kl)

〈φkp1
φkp2

〉 . . . 〈φkpl−1
φkpl

〉 (6.115)

In quantum field theory this result is known as Wick’s theorem and the basis of pertur-
bative calculations.

Appendix

Functional Differentiation

We first give a general definition: a functional F is a mapping from functions η(x) on Rd

onto the real or complex numbers (or in general on vectors). One writes F [η] with square
brackets to emphasize that the argument is a function rather than a number. A simple
example of a functional is

F [η] =
∫
dx f(x)η(x) , (6.116)

with f(x) some generalized function on Rd.
Next, we introduce the notion of the functional derivative of a functional. It is defined

as a linear functional on a space of suitable test functions ϕ(x) according to

∫
dx ϕ(x)

δF [η]

δη(x)
= lim
ε→0

1

ε
{F [η + εϕ]− F [η]} . (6.117)
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Applying this definition to the functional (6.116) , we get

δF [η]

δη(x)
= f(x) . (6.118)

In a similar manner we derive
δη(x)

δη(y)
= δ(x− y) . (6.119)

The rules for functional differentiation are very much like the ones for ordinary derivatives.
For, instance, under some mild continuity conditions we have

δ

δη(x)

δF [η]

δη(y)
=

δ

δη(y)

δF [η]

δη(x)
=

δ2F [η]

δη(x)δη(y)
, (6.120)

or [
δ

δη(x)
,

δ

δη(y)

]
= 0 . (6.121)

Other rules one may use are

δ

δη(x)
F n[η] = nF n−1[η]

δF [η]

δη(x)
, (6.122)

δ

δη(x)
eF [η] = eF [η]

δF [η]

δη(x)
, (6.123)

which imply [
δ

δη(x)
, η(y)

]
= δ(x− y) . (6.124)

These rules suffice for our purpose.
Under suitable differentiability conditions there also exists an analogue of the Taylor

expansion for a functional. Indeed, by Taylor’s formula we have

F [η + zϕ] = F [η] + z
∂F

∂z

∣∣∣∣∣
z=0

+ 1
2
z2
∂2F

∂z2

∣∣∣∣∣
z=0

+ · · · (6.125)

regarding F as an ordinary function of z. Using the definition (6.117) of the functional
derivative, we may write

F [η + zϕ] = F [η] +
∞∑
N=1

zN

N !

∫
dxNϕ(x1) . . . ϕ(xN)

δNF [η]

δη(x1) . . . δη(xN)
. (6.126)

Taking η = 0, z = 1, and changing ϕ to η, we obtain the so-called Volterra series:

F [η] = F [0] +
∞∑
N=1

1

N !

∫
dxNη(x1) . . . η(xN)

δNF [η]

δη(x1) . . . δη(xN)

∣∣∣∣∣
η=0

. (6.127)
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Figure 6.5: Integration contour used in calculation of Matsubara frequencies by analytic
continuation

If this series converges, the functional F [η] is completely specified by giving the infinite
set of symmetric functions

G(x1, . . . , xN ) =
δNF [η]

δη(x1) . . . δη(xN)

∣∣∣∣∣
η=0

(6.128)

for which F [η] is said to be the generating functional. This formalism is very useful as a
starting point for perturbation theory.

Appendix

Analytic Continuation

The energy summations that occur in the Matsubara formalism may be performed by
an analytic extension away from the discrete complex energies down the real axis. We
discuss three approaches.

(1) The first one is standard and involves the replacement of energy sums by contour
integrals. For a summation over bosonic energies k0 = i2nπT the rule is

T
∑
n

f(k0) =
∫
C+

dz

2πi
n(z)[f(z) + f(−z)] +

∫ i∞
−i∞

dz

2πi
f(z) , (6.129)
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and for odd fermionic frequencies k0 = i(2n + 1)πT − µ

T
∑
n

f(k0) = −
∫
C+

dz

2πi
[n+(z)f(z) + n−(z)f(−z)] +

∫ i∞
−i∞

dz

2πi
f(z) . (6.130)

These formulae are valid for any function f(z) which is analytic in the neighborhood of
the imaginary line Rez = µ, and which has the property that the product f(z) exp−β|z|
vanishes sufficiently fast at infinity. The contour C+ circumscribes clockwise all singular-
ities of the functions f(z) and f(−z) in the right half plane, but none of the poles of the
Fermi-Dirac and Bose-Einstein distribution functions

n±(z) =
1

exp β(z ∓ µ) + 1 , n(z) =
1

exp βz − 1 , (6.131)

whose poles occur at the Matsubara frequencies z = iωn, each with residue T .
One may notice that no use is made of the convergence factor which plays a crucial

role in non-relativistic many-body theory. This convergence factor enables one to close
the vacuum contour in the left half plane. In a theory without anti-particles this amounts
to a specific renormalization prescription to eliminate vacuum terms.

(2) The Matsubara sums can be performed with the help of the above formula. However,
the choice of the pole generating functions is not unique and one may also do the sum by
the so called ”Coth method”, in the case of bosons. Let f(z) be a meromorphic function
with no poles at any of the Matsubara frequencies, then

T
∑
n

f(iωn − µ) = −Res(f, zi) 1
2
coth 1

2
β(zi − µ) , (6.132)

where i runs over all poles zi of the function f(z) and Res(f, zi) stands for the residue of
f(z) in the poles at z = zi. This expression is valid provided f(z) falls off rapidly enough at
|z| → ∞ to ensure that the contour integration of f(z) along a complex contour enclosing
all poles vanishes in this limit. The proof is a standard application of the residue theorem
and uses the fact that the function 1

2
coth 1

2
βz has poles at z = iωn with unit residue.

There is an important corollary to this summation rule, which states that in a given
diagram the number of distribution functions is directly related to the number of loops in
the diagram. The proof is simple: in the imaginary-time formalism the number of loops
equals the number of Matsubara frequency summations. In practical calculations it is
convenient to perform a partional fractioning on the propagators, e.g.

∆̃(iωn,k) =
1

ω2n + ω
2
k

=
∑
s=±1

1

2ωk

s

iωn − sωk . (6.133)

Using the method of contour integration to perform the sums, each sum gives rise to one
‘coth’ function, either with positive or negative energy

1
2
coth 1

2
sβω = n(sω) + 1

2
= s[n(ω) + 1

2
], s = ±1 . (6.134)
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Hence, the resulting expressions are of the form of spatial momentum integrals over Bose-
Einstein or Fermi-Dirac distribution functions, where the number of distribution functions
is equal to, or less, than the numbers of loops.

(3) There is also a method for direct analytic continuation of Matsubara diagrams without
actually doing the frequency summations. The method was originally proposed by Balian
and de Dominicis (1960), and independently by Dzyaloshinskii (1962) and by Baym and
Sessler (1963). Recently the method has been rediscovered by Pisarski (1988) and in the
thermal field literature it is now referred to as the “Saclay Method”. The starting point
is the contour propagator (1.63) in the time-representation, but Fourier-transformed in
space

∆(τ,k) =
∫
dk0
2π
ρ0(k)e

−τk0 [θ(τ) + ηn(ω)] , (6.135)

∆̃(k) =

β∫
0

dτek0τ∆(τ,k) . (6.136)

Reverting from frequency to time has the advantage that the frequency summations can
now be trivially performed. The photon propagator has been calculated by this method
in chapter 3.
A graphical representation is obtained by arranging the vertices in a given diagram

such that their imaginary time coordinates decrease from right to left. The important
point is that the intermediate times have a definite sign: on an internal line directed from
right to left the sign is positive, and on a line with the opposite direction negative. In the
former case the propagator contributes a factor 1 + ηn and in the opposite case a factor
ηn. The time integrations can then be performed. Finally the sum has to be taken over
all time orderings.
Although straightforward in principle, the higher-order calculations become quite te-

dious and it is difficult to keep track of all contributions. The problem is that in the
”Saclay method” one gets one distribution function for each propagator, whereas we know
that the number of distribution functions after analytic continuation should be equal to
or less than the number of loops. Hence, during the calculations a host of redundant
terms must disappear through cancelations.
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