\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

X. Curvature

Ricci Tensor

   From the Riemann (10.2), which contains all information about curvature, one defines other tensors, with less detailed curvature information, by a contraction of indices. The most important in GRT are the Ricci tensor (Ricci for short), either in the coordinate or tetrad basis:

10.17

\[{R_{\mu \nu }} : = {g^{\kappa \lambda }}{R_{\mu \kappa \lambda \nu }}{\qquad} {R_{ab}}: = {\eta ^{cd}}{R}_{acdb}\]

and the scalar curvature, the simplest measure of curvature, obtained by a further contraction:

10.18

\[R: = {g^{\mu \nu }}{R_{\mu \nu }} = {\eta ^{ab}}{R_{ab}}\]

Note that the Ricci is symmetric on account of the interchange and skew symmetries (10.4a,b,c).

   In the GA-formalism, the Ricci is defined from equation (10.2) by the contraction

10.19

\[{\text{ }}{{\mathbf{R}}_\mu }: = {{\mathbf{g}}^\nu } \cdot {{\mathbf{R}}_{\mu \nu }} = {{\mathbf{g}}^\nu } \cdot \operatorname{Riem} ({{\mathbf{g}}_\mu } \wedge {{\mathbf{g}}_\nu }): = \operatorname{Ric} ({{\mathbf{g}}_\mu })\]

Thus, in GA, the Ricci is a linear operator on the tangent space that maps vectors to vectors, consistent with the tensor definitions (10.17):

10.20

\[\operatorname{Ric} ({{\mathbf{g}}_\mu }) = {R_{\mu \nu }}{{\mathbf{g}}^\nu }{\qquad}\operatorname{Ric} ({{\mathbf{e}}_a}) = {R_{ab}}{{\mathbf{e}}^b}\]

   Similarly, consistent with (10.18), the scalar curvature is obtained by contracting the Ricci, or directly the Riemann

10.21

\[R = {{\mathbf{g}}^\mu } \cdot {{\mathbf{R}}_\mu } = ({{\mathbf{g}}^\mu } \wedge {{\mathbf{g}}^\nu }) \cdot {{\mathbf{R}}_{\mu \nu }} = {g^{\mu \nu }}{R_{\mu \nu }}\]

   Both the Ricci and the scalar curvature have the dimension of an inverse squared length. This means that the square root of the inverse of the curvature gives a typical length scale that one may use to estimate gravitational effects.