\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

I. Metric and Connection

Levi-Civita Connection

   On scalar functions the coderivative ${D_\mu } = {{\mathbf{g}}_\mu } \cdot D$,   $D = {{\mathbf{g}}^\mu }{D_\mu }$,  acts as an ordinary spacetime derivative ${D_\mu }f({\mathbf{x}}): = {\partial _\mu }f({\mathbf{x}})$ . With this rule and the Levi-Civita connection as defined in (1.14), covariant derivatives of a vector ${\mathbf{A}}$ are calculated as:

1.17

\[ {D_\mu }{\mathbf{A}} = {D_\mu }({A^\nu } {{\mathbf{g}}_\nu }) = ({\partial _\mu }{A^\nu } + \Gamma _{\mu \kappa }^\nu {A^\kappa }) {{\mathbf{g}}_\nu }: = {A^\nu }_{;\mu }{{\mathbf{g}}_\nu }  \]

1.18

\[  D \cdot {\mathbf{A}} = {{\mathbf{g}}^\mu } {D_\mu } \cdot ({A^\nu }{{\mathbf{g}}_\nu }) = {\partial _\mu }{A^\mu } + \Gamma _{\mu \kappa }^\mu {A^\kappa }  \]

1.19

\[  {\mathbf{a}} \cdot D{\mathbf{A}} = {a^\mu }{D_\mu }({A^\nu }{{\mathbf{g}}_\nu }) = {a^\mu }({\partial _\mu }{A^\nu } + \Gamma _{\mu \kappa }^\nu {A^\kappa }){{\mathbf{g}}_\nu }  \]

1.20

\[  D \wedge {\mathbf{A}} = {{\mathbf{g}}^\mu }{D_\mu } \wedge ({A_\nu }{{\mathbf{g}}^\nu })= {\partial _\mu }{A_\nu } {{\mathbf{g}}^\mu } \wedge {{\mathbf{g}}^\nu } + {A_\nu }D \wedge {{\mathbf{g}}^\nu } \]

   The last term of (1.20) is zero in GRT; see equation (1.26). If and only if that is the case, the covariant curl $D \wedge $ is equivalent to the exterior derivative ${\text{d}}$ in (1.7). Note the standard notation ‘;’ for the covariant derivative in the component formalism. 

   If ${\mathbf{F}}$ is the 2-form (1.8), then:

1.21

\[  \begin{gathered} D \cdot {\mathbf{F}} = {{\mathbf{g}}^\mu } \cdot \left[ {{D_\mu }\left( {\frac{1}{2} {F^{\kappa \lambda }}{{\mathbf{g}}_\kappa } \wedge {{\mathbf{g}}_\lambda }} \right)} \right] \\ \qquad \qquad \qquad = \left( {{\partial _\kappa }{F^{\kappa \lambda }} + \Gamma _{\nu \kappa }^\nu {F^{\kappa \lambda }}} \right){{\mathbf{g}}_\lambda } {\text{:}} = {F^{\kappa \lambda }}_{;\kappa }{{\mathbf{g}}_\lambda } \end{gathered}  \]

1.22

\[  D \cdot D \cdot {\mathbf{F}} = {g^\mu } \cdot {D_\mu }({F^{\kappa \lambda }}_{;\kappa }{{\mathbf{g}}_\lambda }) = {F^{\mu \nu }}{\partial _\nu }\Gamma _{\kappa \mu }^\kappa   \]

The last term of (1.22) actually vanishes because ${F^{\mu \nu }}$ is antisymmetric in its indices, whereas the second factor turns out to be symmetric; see (1.29).