\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm
\partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}}
\newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
I. Metric and Connection
Spacetime is locally Lorentz invariant, i.e. the vector
space ${V_4}(x)$, $x = \{ {x^\mu }\} $, is a Minkowski space. Thus,
an infinitesimal displacement gives the line element:
\[ ds^2= d{\mathbf{x}}
\cdot d {\mathbf{x}} = {{\mathbf{g}}_\mu } \cdot {{\mathbf{g}}_\nu }
d{x^\mu }d{x^\nu }: = {g_{\mu \nu }} d {x^\mu } d {x^\nu } \]
Here, the components of the metric tensor field are
defined as as the inner product of the coordinate tangent
vectors:
\[ {g_{\mu \nu }}(x): =
{{\mathbf{g}}_\mu }(x) \cdot {{\mathbf{g}}_\nu } (x) \]
In GRT the metric is not given apriori, except for special
cases in which some features of the metric are known (static
gravitational field, presence of symmetries, etc.) or
postulated. In general the metric tensor must be found from
Einstein's field equation(s); see section
XI.
The metric tensor is dimensionless, symmetric in
its indices and non-degenerate: $g: = {\text{det}}[{g_{\mu \nu
}}] \ne 0$. It has
\[ {g^{\mu \nu }}(x):
= {{\mathbf{g}}^\mu }(x) \cdot {{\mathbf{g}}^\nu }(x) \]
as its inverse:
\[ {g^{\mu \lambda
}}{g_{\lambda \nu }} = \delta _\nu ^\mu {\quad}{{\mathbf{g}}^\mu
} \cdot {{\mathbf{g}}_\nu } = \delta _\nu ^\mu
{\quad}{{\mathbf{g}}^\mu } = {g^{\mu \nu }}{{\mathbf{g}}_\nu
} \]
The covector ${{\mathbf{g}}^\mu }$ thus implicitly contains a
directed measure on the manifold that defines the inner
product between vectors in the tangent space:
\[ {\mathbf{v}}
\cdot {\mathbf{w}} = {v^\mu }{w^\nu }{{\mathbf{g}}_\mu } \cdot
{{\mathbf{g}}_\nu } = {g_{\mu \nu }}{v^\mu }{w^\nu } = {g^{\mu
\nu }}{v_\mu }{w_\nu } \]
The inner product is bi-linear and symmetric.