\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm
#2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
II. Tetrad and Vierbein fields
A tetrad
(Greek foursome) is a set of axes $\{ {{\mathbf{e}}_a}(x);a = 0,1,2,3\}$ at a
point $x = \{ {x^\mu }\} $ of the spacetime ${\mathcal{M}_4}$ that span the
tangent space ${V_4}(x) = {T_{x}}\mathcal{M}_4 $. A common choice is an orthonormal
tetrad, where the axes form a local frame at each point, so that the
scalar products of the axes constitute the Minkowskian metric ${\eta _{ab}} =
(1, - 1, - 1, - 1)$:
\[ {{\mathbf{e}}_a}(x) \cdot
{{\mathbf{e}}_b}(x) = {\eta _{ab}} \]
By using the matrix inverse of the metric, a reciprocal orthonormal
tetrad basis may be defined by
\[ {{\mathbf{e}}^a}(x) \cdot
{{\mathbf{e}}_b}(x) = \delta _b^a \]
This construction exists at every point of ${\mathcal{M}_4}$ , independent
of the coordinate basis $\{ {{\mathbf{g}}_\mu },{{\mathbf{g}}^\nu }\} $.
The
inner product (2.1) is invariant under local Lorentz transformations
(LLT’s)
\[{{\mathbf{e}}_a}(x) \to
{{\mathbf{e'}}_a}(x) = {\Lambda _a}^b(x){{\mathbf{e}}_b}(x)\]
The matrices ${\Lambda _a}^b(x)$ represent position-dependent inverse Lorentz
transformations which operate on the basis vectors. Thus, the tetrad indices
$a,b,c,...$ may be understood as forming the vector representation of the
Lorentz group $\text{SO}(1,3)$ with six independent degrees of freedom, three
degrees of freedom in spatial rotations, and three more in Lorentz boosts.
Tetrad transformations rotate the tetrad axes at each point, while leaving the
back-ground coordinates $\{x^\mu \}$ unchanged. So, in the context of GRT the
Lorentz group is the symmetry group of local tetrad rotations and
boosts; see section VI, Gauge Principle.
The
tetrad base at each point of spacetime defines a local Lorentz frame with a
Minkowski metric, representing the proper rest frame of a local
(idealized) observer. On assumption of the local nature of physics, the tetrad
formalism offers a physical interpretation of GRT in terms of concepts of
special relativity; see section VI.