\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm
\partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}}
\newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
II. Tetrad and Vierbein fields
A tetrad (Greek foursome) is a set of axes $\{
{{\mathbf{e}}_a}(x);a = 0,1,2,3\}$ at a point $x = \{ {x^\mu }\} $
of the spacetime ${\mathcal{M}_4}$ that span the tangent space
${V_4}(x) = {T_{x}}\mathcal{M}_4 $. A common choice is an orthonormal
tetrad, where the axes form a local frame at each point, so
that the scalar products of the axes constitute the Minkowskian
metric ${\eta _{ab}} = (1, - 1, - 1, - 1)$:
\[ {{\mathbf{e}}_a}(x)
\cdot {{\mathbf{e}}_b}(x) = {\eta _{ab}} \]
By using the matrix inverse of the metric, a reciprocal orthonormal
tetrad basis may be defined by
\[ {{\mathbf{e}}^a}(x)
\cdot {{\mathbf{e}}_b}(x) = \delta _b^a \]
This construction exists at every point of ${\mathcal{M}_4}$ ,
independent of the coordinate basis $\{ {{\mathbf{g}}_\mu
},{{\mathbf{g}}^\nu }\} $.
The inner product (2.1) is invariant under local Lorentz
transformations (LLT’s)
\[{{\mathbf{e}}_a}(x) \to
{{\mathbf{e'}}_a}(x) = {\Lambda _a}^b(x){{\mathbf{e}}_b}(x)\]
The matrices ${\Lambda _a}^b(x)$ represent position-dependent
inverse Lorentz transformations which operate on the basis vectors.
Thus, the tetrad indices $a,b,c,...$ may be understood as forming
the vector representation of the Lorentz group $\text{SO}(1,3)$ with
six independent degrees of freedom, three degrees of freedom in
spatial rotations, and three more in Lorentz boosts. Tetrad
transformations rotate the tetrad axes at each point, while leaving
the back-ground coordinates $\{x^\mu \}$ unchanged. So, in the
context of GRT the Lorentz group is the symmetry group of
local tetrad rotations and boosts; see section VI,
Gauge Principle.
The tetrad base at each point of spacetime defines a local Lorentz
frame with a Minkowski metric, representing the proper rest
frame of a local (idealized) observer. On assumption of the
local nature of physics, the tetrad formalism offers a physical
interpretation of GRT in terms of concepts of special relativity;
see section VI, Postulates.