\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm
\partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}}
\newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
II. Tetrad and Vierbein fields
The primitive object in the tetrad formalism is the vierbein
field ${e_\mu }^a(x)$, in place of the spacetime metric in the
coordinate formalism. The vierbeins are real 4 × 4 invertible
matrices, with 16 independent components, acting as a soldering
agent between the general manifold (Greek indices) and the
Minkowski spacetime (Latin indices):
\[ {{\mathbf{g}}_\mu }(x)
= {e_\mu }^a(x) {{\mathbf{e}}_a}(x){\quad}{e_\mu }^a(x): =
{{\mathbf{g}}_\mu }(x) \cdot {{\mathbf{e}}^a}(x) \]
\[ {{\mathbf{e}}_a}(x) =
{e^\mu }_a(x) {{\mathbf{g}}_\mu }(x){\quad}{e^\mu }_a(x): =
{{\mathbf{g}}^\mu }(x) \cdot {{\mathbf{e}}_a}(x) \]
From their definition it follows that the local Lorentz frame
vierbein fields ${e_\mu }^a(x)$ diagonalize the metric tensor as in
(2.4). In terms of the inverse matrices ${e^\mu }_a(x)$, equation
(2.1) becomes the so-called the inner product-signature
constraint
\[{g_{\mu \nu }}(x){e^\mu
}_a(x){e^\nu }_b(x) = {\eta _{ab}}{\qquad}\sqrt { - g} \det [{e^\mu
}_a] = 1\]
This key result is basic to the use of orthonormal bases in curved
spacetime,
The above argument can be made more rigorous by recognizing
that the metric is a non-degenerate matrix. So, it can be
diagonalized at each spacetime point through an orthogonal matrix:
${E^T}gE = {\text{diag}}({\lambda _0}, {\lambda _1},{\lambda
_2},{\lambda _3})$, ${E^T}E = {\rm I}$. Re-scaling
\[ {e^\mu }_a: =
\frac{1}{{\sqrt {\left| {{\lambda _a}} \right|} }}{E^\mu }_a
\]
gives then ${e^T}ge = {\text{diag}}(1, - 1, - 1, - 1) = \eta
$. Since the metric signature $\eta$ is an intrinsic property
of a manifold (Sylvester's law), this result establishes that a
Lorentzian metric admits a Minkowskian base at each point of the
manifold.