\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm
#2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
II. Tetrad and Vierbein fields
The
primitive object in the tetrad formalism is the vierbein field ${e_\mu
}^a(x)$, in place of the spacetime metric in the coordinate formalism. The
vierbeins are real 4 × 4 invertible matrices, with 16 independent components,
acting as a soldering agent between the general manifold (Greek
indices) and the Minkowski spacetime (Latin indices):
\[ {{\mathbf{g}}_\mu }(x) = {e_\mu
}^a(x) {{\mathbf{e}}_a}(x){\quad}{e_\mu }^a(x): = {{\mathbf{g}}_\mu }(x) \cdot
{{\mathbf{e}}^a}(x) \]
\[ {{\mathbf{e}}_a}(x) = {e^\mu
}_a(x) {{\mathbf{g}}_\mu }(x){\quad}{e^\mu }_a(x): = {{\mathbf{g}}^\mu }(x)
\cdot {{\mathbf{e}}_a}(x) \]
From
their definition it follows that the local Lorentz frame vierbein fields
${e_\mu }^a(x)$ diagonalize the metric tensor as in (2.4). In terms of the
inverse matrices ${e^\mu }_a(x)$, equation (2.1) becomes the so-called the inner
product-signature constraint
\[{g_{\mu \nu }}(x){e^\mu }_a(x){e^\nu
}_b(x) = {\eta _{ab}}{\qquad}\sqrt { - g} \det [{e^\mu }_a] = 1\]
This key result is basic to the use of orthonormal bases in curved
spacetime,
The
above argument can be made more rigorous by recognizing that the metric
is a non-degenerate matrix. So, it can be diagonalized at each spacetime point
through an orthogonal matrix: ${E^T}gE = {\text{diag}}({\lambda _0}, {\lambda
_1},{\lambda _2},{\lambda _3})$, ${E^T}E = {\rm I}$. Re-scaling
\[ {e^\mu }_a: = \frac{1}{{\sqrt
{\left| {{\lambda _a}} \right|} }}{E^\mu }_a \]
gives then ${e^T}ge = {\text{diag}}(1, - 1, - 1, - 1) = \eta $. Since
the metric signature is an intrinsic property of a manifold (Sylvester's law),
this result establishes that a Lorentzian metric admits a Minkowskian base at
each point of the manifold.