\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

IV. Spin Connection

Ricci Rotation Coefficients

   By defining $\,{\partial _a}: = {e^\mu }_a{\partial _\mu }$, $\,{D_a}: = {e^\mu }_a{D_\mu }$, $\,{{\mathbf{\omega }}_a}: = {e^\mu }_a{{\mathbf{\omega }}_\mu }$, one may write the definition of the spin connection (4.1) in the alternative forms

4.18

\[  \begin{gathered} {D_a}{{\mathbf{e}}_b} = {e^\nu }_a \Sigma {{_\nu}{^c}}{_b} {{\mathbf{e}}_c}  = {\omega{{_a}{^c}}{_b}} {{\mathbf{e}}_c}  = {{\mathbf{\omega }}_a} \cdot {{\mathbf{e}}_a}\\ {D_a}{{\mathbf{e}}^b} = - \omega {{_a}{^b}}{_c}{{\mathbf{e}}^c}  = - {{\mathbf{\omega }}_a} \cdot {{\mathbf{e}}^b}\end{gathered}  \]

   The tetrad connection coefficients

4.19

\[  {\omega _{abc}} : = {e^\nu }_a{\Sigma _{\nu bc}} \]

are known as the Ricci rotation coefficients. They measure the rotation of frame tetrads when moved in various directions, encoding thus gravitational and non-inertial effects. Equivalently, from (4.5), (4.8), (4.18), the Ricci rotation coefficients may be defined by: [Wikipedia: Christoffel symbols]

4.20

\[  {\omega _{abc}}: = {{\mathbf{e}}_b} \cdot ({D_a}{{\mathbf{e}}_c}) = {{\mathbf{e}}_b} \cdot {{\mathbf{\omega }}_a} \cdot {{\mathbf{e}}_c} = {e^\mu }_a{e_{\nu [b}}D_\mu ^\Gamma {e^\nu }_{c]}  \]

   In addition to the spin connection bivector (4.4), by the Ricci coefficients one may also define a spin-connection 1-form:

4.21

\[  {{\mathbf{\omega }}^a}_b: = {{\mathbf{g}}^\mu }\Sigma {{_\mu}{^a}}{_b} = {{\mathbf{e}}^c}{\omega{{_c}{^a}}{_b}} {\quad}{{\mathbf{\omega }}_{ab}} = - {{\mathbf{\omega }}_{ba}}  \]

Its relation with the connection bivector (4.4) is through (4.5):

4.22

\[  {{\mathbf{g}}^\mu }{D_\mu }{{\mathbf{e}}_a}: = D{{\mathbf{e}}_a} = {{\mathbf{g}}^\mu }{{\mathbf{\omega }}_\mu } \cdot {{\mathbf{e}}_a} = {{\mathbf{\omega }}^b}_a{{\mathbf{e}}_b}  \]

   In spite of their close correspondence, ${{\mathbf{\omega }}_{ab}}$ and ${{\mathbf{\omega }}_\mu }$ are different geometric objects: the first one is a matrix valued 1-form with values in the Lie-algebra of the Lorentz group $\text{SO}(1,3)$, whereas the second is a bivector. The connection 1-form plays a central role in the Cartan formalism of GRT defining both torsion and curvature. The connection bivector is the primary connection form in the GA tetrad-formalism.