\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm
\partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}}
\newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
IV. Spin Connection
In the torsionless case, it is possible to derive an
expression for the spin connection bivector (4.4) in terms of the
metric and the vierbein. The steps involved are:
- substitute expression (4.8) into definition (4.4) of the spin
connection bivector;
- replace ${{\mathbf{e}}^a} \wedge {{\mathbf{e}}^b} \to {e_\mu
}^a{e_\nu }^b{{\mathbf{g}}^\mu } \wedge {{\mathbf{g}}^\nu }$;
- use expression (1.29) for the Levi-Civita connection
coefficients.
This then yields the useful relation
\[ 2{{\mathbf{\omega
}}_\mu } = {{\mathbf{g}}^\nu } \wedge \nabla {g_{\mu \nu }} +
{{\mathbf{g}}_\nu } \wedge {\partial _\mu }{{\mathbf{g}}^\nu
}{\quad}{{\mathbf{g}}^\nu } = {e^\nu }_b{{\mathbf{e}}^b} \]
first derived by John Snygg [JS]. Note that, in the
calculation of connection coefficients, the rule is that spacetime
derivatives do not act on base vectors, only on scalar
components relative to base vectors; see GA
Coderivative, item a.
A simplification occurs in the case of a diagonal metric:
${g_{\mu \mu }} = {\text{(}}{g_{00}},{g_{11}},{g_{22}},{g_{33}})$.
If then the tetrad frame is aligned with the coordinate
frame, the vierbein is also diagonal (no summation of $\mu $)
\[ {g_{\mu \mu}} = {\eta
_\mu }{({e_\mu }^\mu )^2}{\quad} {\eta _\mu }: = {\eta _{\mu \mu
}} \]
with ${\eta _\mu } = (1, - 1, - 1, - 1)$ the signature
indicator. The second term in relation (4.10) then vanishes
\[ {{\mathbf{g}}_\nu } \wedge
{\partial _\mu }{{\mathbf{g}}^\nu } = {{\mathbf{g}}_\nu } \wedge
({\partial _\mu }{e^\nu }_\nu ){{\mathbf{e}}^\nu } = {g_{\nu\nu}
}{e^\nu }_\nu ({\partial _\mu }{e^\nu }_\nu ){{\mathbf{e}}^\nu }
\wedge {{\mathbf{e}}^\nu } = 0 \]
and equation (4.10) reduces for diagonal metrics to
\[ 2{{\mathbf{\omega
}}_\mu } = {{\mathbf{g}}^\mu } \wedge \nabla {g_{\mu \mu }} =
{{\mathbf{g}}^\mu } \wedge {{\mathbf{g}}^\nu }{\partial _\nu
}{g_{\mu \mu }} \]
without sum over $\mu $. This formula will be applied to the
Schwarzschild metric in Section VIII, Connection
Coefficients.