\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

V. Parallel Transport

Tangent Vectors

   Consider a smooth spacetime curve  ${\mathbf{x}}(\lambda )$ parametrized by a parameter $\lambda $. The tangent vectors to this curve are given by

5.1

\[  {\mathbf{u}}(\lambda ) : = \frac{{d{\mathbf{x}}}}{{d\lambda }} = \frac{{\partial {\mathbf{x}}}} {{\partial {x^\mu }}}\frac{{d{x^\mu }}}{{d\lambda }} = {u^\mu }{\partial _\mu }{\mathbf{x}} = {u^\mu }(\lambda ){{\mathbf{g}}_\mu }({\mathbf{x}}(\lambda ))  \]

with respect to the coordinate basis along the curve.

   For a vector ${\mathbf{Y}}(\lambda ): = {\mathbf{Y}}({\mathbf{x}}(\lambda ))$, the directional coderivative along the curve is defined as

5.2

\[  \frac{{D{\mathbf{Y}}}}{{d\lambda }}: = {u^\mu }{D_\mu }{\mathbf{Y}} = {\mathbf{u}} \cdot D{\mathbf{Y}} \]

This is a natural generalization of ${D_\mu }: = {{\mathbf{g}}_\mu } \cdot D$, the coderivative along the basis vector ${{\mathbf{g}}_\mu }$. In the literature the directional derivative ${\mathbf{u}} \cdot D$ is often denoted as (bold) ${\nabla _{\mathbf{u}}}$. 

   Any vector ${\mathbf{Y}}$ can be expanded in terms of the basis vectors of the coordinate frame as ${\mathbf{Y}} = {Y^\nu }{{\mathbf{g}}_\nu }$. In view of (1.17) the coordinate form of (5.2) is then

5.3

\[  {u^\mu }{D_\mu }{\mathbf{Y}} = {u^\mu }({\partial _\mu }{Y^\nu } + \Gamma _{\mu \kappa }^\nu {Y^\kappa }) {{\mathbf{g}}_\nu }  \]

If the same vector is expanded with respect to the local tetrad frame $\{ {{\mathbf{e}}_a}\} $, the connection is determined by the bivector (4.4):

5.4

\[  {u^\mu }{D_\mu }{\mathbf{Y}} = ({u^\mu }{\partial _\mu }{Y^a}) {{\mathbf{e}}_a} + {u^\mu }{{\mathbf{\omega }}_\mu } \cdot {\mathbf{Y}}  \]