\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

VII. Fermi-Walker Transport

Rotation Bivector

   The construction of Fermi coordinates may be generalized to observer frames moving along arbitrary worldlines. The characterization of a set of tetrad fields $\left\{ {{{\text{e}}_a}({\mathbf{x}})} \right\}$ as an accelerated observer frame is given by its velocity and acceleration along the path ${\mathbf{x}}(\lambda )$ of the observer:

7.4

\[  {\mathbf{u}}: = {\operatorname{e} _0} {\quad{\mathbf{\dot u}}}: = {\mathbf{u}} \cdot D{\mathbf{u}} = \frac{{D{\operatorname{e} _0}}}{{d\lambda }}{\quad}{\mathbf{u}} \cdot {\mathbf{\dot u}} = 0  \]

   The motion of the observer frame, relative to parallel transport, is described by the spin connection bivector (4.4) and can be written as a rotation (Lorentz transformation) in spacetime:

7.5

\[  \frac{{D{\operatorname{e} _a}}}{{d\lambda }}  = {\mathbf{u}} \cdot D{\operatorname{e} _a} = {\mathbf{\Omega }} \cdot {\operatorname{e} _a}{\quad {\mathbf{\Omega} }} : = {u^\mu }{{\mathbf{\omega }}_\mu } = {{\mathbf{\omega }}_0 }  \]

The rotation bivector ${\mathbf{\Omega }}$ has the Ricci rotation coefficients (4.19) as components:

7.6

\[  \begin{gathered}{\mathbf{\Omega }}  = \frac{1}{2}{\omega _{0ab}} \,{\operatorname{e} ^a} \wedge {\operatorname{e} ^b} {\quad}{\mathbf{\Omega }} \cdot {\operatorname{e} _b} = {\omega _0}{^c}{_b}\,{\operatorname{e} _c} \\{{\mathbf{\Omega }}_{ab}} = {\mathbf{\Omega}} _{[ab]} : = {\operatorname{e} _a} \cdot {\mathbf{\Omega }} \cdot {\operatorname{e} _b} = {\omega _0}_{ab} \end{gathered}  \]

   Being anti-symmetric, the rotation bivector has six independent components. This number agrees with the number of components in a Lorentz transformation (three parameters for rotations, plus three parameters for boosts). The components ${\mathbf{\Omega}}_{0i}$ may be identified with the acceleration, and the spatial components ${\mathbf{\Omega}}_{ij}$ with the frequency of rotation of the local spatial frame, as measured with respect to the local non-spinning observer frame.