\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

IX. Spherically Symmetric Spacetimes

Connection Bivectors

   The calculation of the connection bivectors starts with the identification of metric tensor component from (9.2) and the relation between the coordinate basis and the tetrad base from (9.1):

9.3

\[  \begin{gathered} &{g_{tt}} = {{\mathbf{g}}_t} \cdot {{\mathbf{g}}_t} = {\text{g}}_1^2 - {\text{g}}_2^2 {\quad}&{{\mathbf{g}}_t} = {g_1}{{\mathbf{e}}_t} - {g_2}{{\mathbf{e}}_r}{\quad} \hfill \\ &{g_{rr}} = {{\mathbf{g}}_r} \cdot {{\mathbf{g}}_r} = f_2^2 - f_1^2{\quad}&{{\mathbf{g}}_r} = {f_1}{{\mathbf{e}}_r} - {f_2}{{\mathbf{e}}_t} \quad \hfill \\ &{g_{\theta \theta }} = {{\mathbf{g}}_\theta } \cdot {{\mathbf{g}}_\theta }{\text{ = }} - {r^2}{\qquad} &{{\mathbf{g}}_\theta } = r{{\mathbf{e}}_\theta } \qquad \qquad \hfill \\ &{g_{\phi \phi }} = {{\mathbf{g}}_\phi } \cdot {{\mathbf{g}}_\phi }{\text{ = }} - {r^2}{\sin}^2\theta {\quad}&{{\mathbf{g}}_\phi } = r\sin \theta {{\mathbf{e}}_\phi } \qquad \hfill \\ &{g_{tr}} = {{\mathbf{g}}_t} \cdot {{\mathbf{g}}_r} = {f_1}{g_2} - {g_1}{f_2} \quad \hfill \\ \end{gathered}  \]

These relations imply that the tetrad base $\left\{ {{{\mathbf{e}}_t},{{\mathbf{e}}_r},{{\mathbf{e}}_\theta },{{\mathbf{e}}_\phi }} \right\}$ is orthonormal.

   The connection coefficients may then be obtained by way of the Snygg formula (4.13):

9.4

\[  \begin{gathered} {{\mathbf{\omega }}_t} = - ({g_1}{\partial _r}{g_1} - {g_2}{\partial _r}{g_2}){{\mathbf{e}}_t} \wedge {{\mathbf{e}}_r}{\text{ }} \hfill \\ {{\mathbf{\omega }}_r} = - ({f_1}{\partial _r}{g_2} - {f_2}{\partial _r}{g_1}){{\mathbf{e}}_t} \wedge {{\mathbf{e}}_r}{\text{ }} \hfill \\ {{\mathbf{\omega }}_\theta } = {g_1}{{\mathbf{e}}_r} \wedge {{\mathbf{e}}_\theta } - {g_2}{{\mathbf{e}}_t} \wedge {{\mathbf{e}}_\theta } \quad \qquad \hfill \\ {{\mathbf{\omega }}_\phi } = \sin \theta \left( {{g_1}{{\mathbf{e}}_r} - {g_2}{{\mathbf{e}}_t}} \right) \wedge {{\mathbf{e}}_\phi } + \cos \theta {{\mathbf{e}}_\theta } \wedge {{\mathbf{e}}_\phi } \hfill \\ \end{gathered}  \]

No derivatives of ${f_1},{f_2}$ appear.

   A comparison of (9.2) with (8.1) shows that the Schwarzschild metric corresponds to the parameter choice

9.5

\[  {f_1} = \frac{1}{{{g_1}}}{\quad}{f_2} = 0{\quad}g_1^2 = 1 - \frac{{2M}}{r} = {e^{2\Phi }}{\quad}{g_2} = 0  \]

Substituting these parameters values into (9.4), one recovers the Schwarzschild connection coefficients (8.10).

   Note that ${f_1}{g_2} - {f_2}{g_1} = 1$ in this case. However, there are other possible choices; for example, $f_1^2 - f_2^2 = 0$ leads to the Eddington-Finkelstein metric, and  $f_1^2 - f_2^2 = 0$, to the PainlevĂ©-Gullstrand metric.