\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \)

Quantum Kinetic Theory

8. Entropy production

Local Euler relation

We go back to the entropy four-flow (7.1), which we decompose as follows:

1

$$ \bea S^\mu=&-&\sum \limits_{k} \int d\om_k\, v^\mu_k \left[f_k \log f^{(0)}_k - \et(1 + \et f_k)\log (1 + \et f^{(0)}_k)\right] \nn \\ &-& K^\mu\left[f,f^{(0)}_k\right]{\rm{ }}{\rm{.}} \la{7.1} \eea $$

The last term is simply the difference of (7.1) and the first terms at the right-hand side of (8.1). The quantity $K^\mu$ vanishes when $\dl \overline{f}_k$ vanishes. In fact, an expansion of the integrand shows that $K^\mu$ is quadratic in the deviation from local equilibrium:

2

$$ \be K^\mu = O\left[ \left( \dl \overline{f}_k \right)^2 \right] {\rm{ }}{\rm{.}} \la{7.2} \ee $$

Like before such terms will be neglected. So we are left with the first term at the right-hand side of (8.1).

Let us substitute (7.5) with (7.6). We then recognize the expression for the current density (3.5) and energy-momentum tensor (3.13), so that we can write

3

$$ \be S^\mu (x) = \sum \limits_{\rm A} \al_{\rm A}(x) J^\mu_{\rm A}(x) +\bt_\nu (x)T^{\mu\nu}(x) +\bt^\mu (x)P^{(0)}(x) {\rm{ }}{\rm{,}} \la{7.3} \ee $$

with $\bt^\mu =(\bt,\vecbt)$. In equilibrium this expression reduces to the familiar Euler relation of thermodynamics. The last term is the local-equilibrium pressure defined by

4

$$ \be \bt (x) P^\nul(x)=\et\sum \limits_{k} \int d\om_k\, \log \left[1 + \et f^\nul_k(x,p)\right]{\rm{ }}{\rm{.}} \la{7.4} \ee $$

Notice that the integral is invariant for a shift $\vecp \rightarrow \vecp + m_k \vecv$ of the integration variable. Using this fact, it follows by explicit calculation that we may write

5

$$ \be \dl \left(\bt^\mu P^\nul \right)= - \sum \limits_{\rm A} J^{\nul\mu}_\rA \dl \al_\rA- T^{\nul\mu\nu} \dl \bt_\nu {\rm{ }}{\rm{,}} \la{7.5} \ee $$

which may be regarded as a generalisation of the thermodynamic Gibbs-Duhem relation. The superscript $(0)$ indicates that the currents and energy-momentum tensor are calculated with $f^{(0)}_k$. Because of the "conditions of fit" (7.10)-(7.12), we have

6

$$ \be N_\rA -N^\nul_\rA = 0 {\rm{ }}{\rm{,}} \la{7.6} \ee $$

7

$$ \be T_{\mu 0} -T^\nul_{\mu 0} = 0 {\rm{ }}{\rm{.}} \la{7.7} \ee $$

No such restrictions are imposed on the other components, and these determine, in fact, the entropy production as we shall see now.

Exercise 9
  • Make sure that the thermodynamic Gibbs and the Gibbs-Duhem relations are valid outside equilibrium if quadratic deviations from local equilibrium are neglected.

Gradients and flows