\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\twothird}{{\scriptstyle \frac{2}{3}}} \)

Quantum Kinetic Theory

9. Irreversible flows

Heat flow

The irreversible flows may be expressed in terms of $\dl f_k$, the deviation from global equilibrium. Take e.g. the heat flow (7.10). The first term can be written, see (2.8),

1

$$ \be \vecJ_E = \sum \limits_{k} \int d\om_k\,\ep_k \vecv_k \dl f_k {\rm{ }}{\rm{,}} \la{8.1} \ee $$

since the energy flow vanishes in equilibrium. Furthermore, the zeroth-order flow may be calculated by a shift of integration variables as

2

$$ \be \vecJ^\nul_E= (E+P) \vecv {\rm{ }}{\rm{,}} \la{8.2} \ee $$

where the factor in front is the equilibrium enthalpy density. For the hydrodynamic velocity we can write

3

$$ \be \rh \dl \vecv =\dl \vecG = \sum \limits_{k} \int d\om_k\,\vecp \, \dl f_k {\rm{ }}{\rm{.}} \la{8.3} \ee $$

So we finally arrive at the heat flow

4

$$ \be \vecI_q = \sum \limits_{k} \int d\om_k\, \vecj_{qk} \,\dl f_k {\rm{ }}{\rm{,}} \la{8.4} \ee $$

expressed in terms of $\dl f_k$ and the so-called dissipative current

5

$$ \be \vecj_{qk} = \left[ \ep_k - m_k \rh^{-1} (E+P)\right]\, \vecv_k {\rm{ }}{\rm{,}} \la{8.5} \ee $$

in which the enthalpy flow is subtracted from the energy flow.

Viscous pressure

Diffusion