\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm
\partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}}
\newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
XI. Field Equations
The field equations in the Einstein-Cartan theory are obtained from
the tetradic action (11.22) by performing independent stationary
variations with respect to the frame field and the Lorentz
connection. The variation with respect to the frame field yields:
\[{\delta
_{\mathbf{e}}}{S_{{\text{EC}}}} [{\mathbf{e}},{\mathbf{\omega }}] =
\frac{1}{{2\kappa }}\int {d{x_4}}\, {\varepsilon _{abcd}}\delta
{{\mathbf{e}}^a} \wedge {{\mathbf{e}}^b} \wedge \left(
{{{\mathbf{R}}^{cd}} + \frac{\Lambda }{3}{{\mathbf{e}}^c} \wedge
{{\mathbf{e}}^d}} \right)\]
The condition that the action vanishes for arbitrary variations
$\delta {{\mathbf{e}}^a}$ gives the equation of motion
\[\frac{1}{2}{\varepsilon_{abcd}}{{\mathbf{e}}^b}
\wedge \left( {{{\mathbf{R}}^{cd}} + \frac{\Lambda
}{3}{{\mathbf{e}}^c} \wedge {{\mathbf{e}}^d}} \right) = 0\]
which is the Einstein (vacuum) field equation in the tetrad
formalism, including the cosmological constant.
Proof
- Expand the curvature 2-form ${{\mathbf{R}}^{cd}}$ to create
the 3-form equation
\[\frac{1}{4}{\varepsilon _{abcd}}{{\mathbf{e}}^b} \wedge
{{\mathbf{e}}^m} \wedge {{\mathbf{e}}^n}\left( {R_{mn}^{cd} +
\frac{\Lambda }{3}\delta _{mn}^{cd}} \right) = 0\]
- Multiply from the left with the pseudoscalar
${\operatorname{I} _4}$. Then use (11.13) and (11.19) for $p=3$
to get:
\[ -
\frac{1}{4}\delta _{acd}^{kmn}\left( {R_{mn}^{cd} +
\frac{\Lambda }{3}\delta _{mn}^{cd}} \right){{\mathbf{e}}_k} =
0\]
- Expand the generalized Kronecker delta's with (11.16) to
recover the tensor form of the Einstein (vacuum) field
equations:
\[{G_{ab}} - \Lambda {\eta _{ab}}= {R_{ab}} - \frac{1}{2}(R +
2\Lambda ){\eta _{ab}} = 0\]
with the Ricci tensor and -scalar as defined in Ricci
Tensor.
The multiplication with ${\operatorname{I} _4}$ above is the
inverse of the multiplication with $\operatorname{I} _4^{ - 1}$ in
(11.20). Both are duality operations equivalent, up to a
sign, to the Hodge Star $( * )$ operation in the
theory of differential forms.