\( \newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}}
\newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}}
\newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label}
\newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}}
\newcommand{\third}{{\scriptstyle \frac{1}{3}}}
\newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm
\partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}}
\newtheorem{problem}{Problem}[chapter]
\newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)
XI. Field Equations
In calculations with the Levi-Civita symbol (tensor), it is often
convenient to express the result in terms of so-called generalized
Kronecker delta’s defined by the determinant:
\[\delta
_{{b_1}{b_2}....{b_p}}^{{a_1}{a_2}...{a_p}}: = p!\delta
_{[{b_1}}^{{a_1}}...\delta _{{b_p}]}^{{a_p}}\]
For example, when $p = n$ (the dimension of the vector space), one
may derive the compact formula
\[{\varepsilon
^{{a_1}...{a_n}}}{\varepsilon _{{b_1}...{b_n}}} = - \delta
_{{b_1}....{b_n}}^{{a_1}...{a_n}}\]
More generally,
\[\frac{1}{{(n - p)!}}
{\varepsilon _{{a_1}...{a_p}{c_{p + 1}}...{c_n}}} {\varepsilon
^{{b_1}...{b_p}{c_{p + 1}}...{c_n}}} = - \delta
_{{a_1}...{a_p}}^{{b_1}...{b_p}}\]
The formulae for $p=2,3$, $n=4$
\[\frac{1}{{2!}}{\varepsilon
_{abcd}} {\varepsilon ^{abmn}} = - \delta
_{cd}^{mn}{\qquad}\frac{1}{{1!}} {\varepsilon _{abcd}}{\varepsilon
^{akmn}} = - \delta _{bcd}^{kmn}\]
prove to be particularly useful in the following. [Wikipedia:
Kronecker delta]