\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

XI. Field Equations

Levi-Civita Tensor

   At this point, it is useful to introduce the completely anti-symmetric Levi-Civita symbol  ${\varepsilon _{abcd}}$, invariant under ${\text{SO}}(1,3)$, with values $ \pm 1$. Its normalization is chosen to be ${\varepsilon _{0123}} = 1 = - {\varepsilon ^{0123}}$, i.e. the Levi-Civita symbol equals the sign of a permutation when the indices are all unequal. De minus sign reflects the metric signature of the Lorentzian manifold.

   By means of the Levi-Civita symbol, the unit pseudoscalar volume and its inverse, defined in Pseudoscalar Volume, may be written according to

11.12

\[{\operatorname{I} _{4}} = - \frac{\varepsilon ^{abcd}}{{4!}}{}{{\mathbf{e}}_a} \wedge {{\mathbf{e}}_b} \wedge {{\mathbf{e}}_c} \wedge {{\mathbf{e}}_d}\quad \operatorname{I} _{4}^{ - 1} = \frac{\varepsilon _{abcd}}{{4!}}{}{{\mathbf{e}}^a} \wedge {{\mathbf{e}}^b} \wedge {{\mathbf{e}}^c} \wedge {{\mathbf{e}}^d}\]

These relations may be inverted to give following useful representations of the unit 4-blades:

11.13

\[{{\mathbf{e}}_a} \wedge {{\mathbf{e}}_b} \wedge {{\mathbf{e}}_c} \wedge {{\mathbf{e}}_d} = {\varepsilon _{abcd}}\operatorname{I} _{4}^{} \quad {{\mathbf{e}}^a} \wedge {{\mathbf{e}}^b} \wedge {{\mathbf{e}}^c} \wedge {{\mathbf{e}}^d} = - {\varepsilon ^{abcd}}\operatorname{I} _{4}^{ - 1}\]

   The term 'symbol' emphasizes that the Levi-Civita symbol does not behave as a tensor: under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix. Objects that transform this way are known as tensor densities. [Wikipedia: Levi-Civita symbol]

   In curved spacetime, one may construct a covariant Levi-Civita tensor (also known as the Riemannian volume form) by defining

11.14

\[{\epsilon_{\mu \nu \kappa \lambda }}: = \sqrt {\left| g \right|} {\varepsilon _{\mu \nu \kappa \lambda }} \qquad {\epsilon^{\mu \nu \kappa \lambda }}: = {\left| g \right|^{ - 1}}{\epsilon_{\mu \nu \kappa \lambda }} = {\left| g \right|^{ - 1/2}}{\varepsilon ^{\mu \nu \kappa \lambda }}\]

These formulae are consistent with the vierbein transformation

11.15

\[{\epsilon_{\mu \nu \kappa \lambda }}  = {e_\mu }^a{e_\nu }^b {e{_\kappa}^c}{e_\lambda }^d{\varepsilon _{abcd}} = \det [{e_\mu }^a]{\varepsilon _{\mu \nu \kappa \lambda }} = \sqrt {\left| g \right|} {\varepsilon _{\mu \nu \kappa \lambda }}\]

and similarly for the second equation in (11.14).

\[