\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

VIII. Schwarzschild solution

Connection coefficients

   In the GA formalism, the connection coefficients for the Schwarzschild metric (8.1) can be obtained via the corresponding connection bivectors (4.4). In this particular orthogonal case, the formula to use is (4.13.). Note that from the definition of the gradient $\nabla : = {{\mathbf{g}}^\mu }{\partial _\mu }$, it follows that $\nabla t = {{\mathbf{g}}^\mu }{\partial _\mu }t = {{\mathbf{g}}^t}$ and $\nabla r = {{\mathbf{g}}^\mu }{\partial _\mu }r = {{\mathbf{g}}^r}$. Since the components of the Schwarzschild metric tensor only depend on the radius $r$ :

8.9

\[  \begin{gathered} &\nabla : = {{\mathbf{g}}^r}{\partial _r} = {e^\Phi }{{\mathbf{e}}^r}{\partial _r}\\ &{{\mathbf{e}}_r} = {e^{ - \lambda }}{{\mathbf{g}}_r} = {e^{ - \lambda }}{g_{rr}}{{\mathbf{g}}^r} = - {e^\lambda }{{\mathbf{g}}^r} \end{gathered}  \]

   With the above rules, the connection coefficients for the Schwarzschild solution can directly be calculated from the metric:

8.10

\[  \begin{gathered} &{{\mathbf{\omega }}_t} = - ({\partial _r}\Phi ){e^{\Phi - \lambda }}{{\mathbf{e}}_t} \wedge {{\mathbf{e}}_r}{\quad}&{{\mathbf{\omega }}_\theta } = {e^{ - \lambda }} {{\mathbf{e}}_r} \wedge {{\mathbf{e}}_\theta } \hfill \\ &{{\mathbf{\omega }}_r} = - ({\partial _t}\lambda ){e^{\lambda - \Phi }} {{\mathbf{e}}_t} \wedge {{\mathbf{e}}_r}{\quad}&{{\mathbf{\omega }}_\phi } = \left( {{e^{ - \lambda }}\sin \theta {{\mathbf{e}}_r} + \cos \theta {{\mathbf{e}}_\theta }} \right) \wedge {{\mathbf{e}}_\phi } \end{gathered}  \]

Since the coefficients in the above connections only depend on the radius, it follows that ${e^\lambda }{\partial _t}\lambda = {\partial _t}{e^\lambda } = 0$  and

8.11

\[ {e^\Phi }{\partial _r}\Phi =  \frac{1}{{\sqrt {1 - 2M/r} }}\frac{M}{{{r^2}}} : = g  \]

   Hence, the Schwarzschild connections are determined by three bivectors with three connection coefficients. It should be noted that the wedges $ \wedge $ in (8.10) are actually unnecessary because the base vectors are orthogonal.