\( \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\ba}{\begin{array}} \newcommand{\ea}{\end{array}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\bean}{\begin{eqnarray*}} \newcommand{\eean}{\end{eqnarray*}} \newcommand{\la}{\label} \newcommand{\nn}{\nonumber} \newcommand{\half}{{\scriptstyle \frac{1}{2}}} \newcommand{\third}{{\scriptstyle \frac{1}{3}}} \newcommand{\bli}[2]{\begin{list}{#1}{\itemsep=0.0cm \topsep=0.0cm \partopsep=0.0cm #2}} \newcommand{\eli}{\end{list}} \newtheorem{problem}{Problem}[chapter] \newcommand{\bprob}{\begin{problem}} \newcommand{\eprob}{\end{problem}}\)

Tetrads in General Relativity

VIII. Schwarzschild solution

Vierbein and Tetrad

   In terms of vierbeins, the line element of GRT has the general form, see (2.3):

8.6

\[  d{s^2} = {g_{\mu \nu }}d{x^\mu }d{x^\nu } = {\eta _{ab}}{e_\mu }^a{e_\nu }^bd{x^\mu }d{x^\nu }  \]

The Schwarzschild metric (8.1) is diagonal and it is then a simple matter to identify the corresponding vierbeins:

8.7

\[  \begin{gathered} &{e_\mu }^a = {\text{diag[}}{e^\Phi }, {e^\lambda },r,r\sin \theta ]\\ &{e^\mu }_a = {\text{diag[}}{e^{ - \Phi }},{e^{ - \lambda }},{r^{ - 1}}, {r^{ - 1}}{(\sin \theta )^{ - 1}}] \end{gathered}  \]

   In general, the vierbein fields $\{{e_\mu }^a(x)\}$ define the local tetrads $\{ {{\mathbf{e}}_a}(x)\} $ through (2.5),(2.6). However, in a diagonal metric, the coordinate basis ${{\mathbf{g}}_\mu }$ will be orthogonal. The tetrad base may then be aligned with this coordinate base: ${{\mathbf{e}}_a} = {\eta _{ab}}{e_\mu }^b\nabla {x^\mu }$, with $\{ {x^\mu }\} : = (t,r,\theta ,\phi )$ the Schwarzschild coordinates. Normalization to the Minkowski metric gives:

8.8

\[  \begin{gathered} &{g_{tt}} := {{\mathbf{g}}_t} \cdot {{\mathbf{g}}_t}{\text{ = }}{{\text{e}}^{2\Phi }} \qquad &{{\mathbf{e}}_t} = {e^{ - \Phi }}{{\mathbf{g}}_t} \hfill \\ &{g_{rr}}: = {{\mathbf{g}}_r} \cdot {{\mathbf{g}}_r}{\text{ = }} - {e^{2\lambda }}\quad &{{\mathbf{e}}_r} = {e^{ - \lambda }}{{\mathbf{g}}_r} \hfill \\ &{g_{\theta \theta }} := {{\mathbf{g}}_\theta } \cdot {{\mathbf{g}}_\theta }{\text{ = }} - {r^2}\quad &{{\mathbf{e}}_\theta } = {r^{ - 1}}{{\mathbf{g}}_\theta } \hfill \\ &{g_{\phi \phi }}: = {{\mathbf{g}}_\phi } \cdot {{\mathbf{g}}_\phi }{\text{ = }} - {r^2}{\text{si}}{{\text{n}}^2}\theta \qquad &{{\mathbf{e}}_\phi } = {(r\sin \theta )^{ - 1}}{{\mathbf{g}}_\phi } \hfill \\ \end{gathered}  \]

This choice of tetrads very much simplifies further calculations.