Het projectiepostulaat (zie vorige pagina) is plausibel omdat men verwacht dat een tweede meting onmiddellijk na de eerste meting dezelfde uitkomst geeft. Dit kan sterker gesteld worden: de onmiddellijke herhaalbaarheid van metingen is een cruciale eis voor een consistente fysische interpretatie van de theorie. Deze eis van noodzakelijke zekerheid impliceert dat gemeten toestanden van een observabele onderling orthogonaal moeten zijn, hetgeen weer afdwingt dat de corresponderende operatoren hermitisch zijn.
- Met het principe van onmiddellijke herhaalbaarheid is het projectiepostulaat overbodig en hoeft ook geen beroep te worden gedaan op de Born-regel omdat orthogonaliteit zekerheid impliceert (Wojciech Zurek, 2014).
- Als door een experiment nieuwe kennis wordt verkregen omtrent een quantumsysteem dan verandert daarmee irreversibel de quantumtoestand van het systeem. Anders gezegd, als nieuwe informatie beschikbaar komt over een quantumsysteem, dan moet de waarschijnlijkheidsfunctie geactualiseerd worden.
Meetopstellingen dienen niet alleen om de actuele toestand vast te stellen maar worden vaak ook gebruikt om een systeem te prepareren in een speciale (begin)toestand. Dergelijke acties van een experimentator beïnvloeden doelgericht de waarschijnlijkheidsverdeling; zie Stern-Gerlach-experimenten.
- De waarschijnlijkheidsverdeling van toekomstige meetuitkomsten voor observabelen, hangt af van eerdere meetuitkomsten verkregen met hetzelfde meetsysteem, maar niet van eerdere metingen met andere meetopstellingen (Carlo Rovelli, 1996).
- Recent is het mogelijk gebleken subtiele metingen uit te voeren aan quantumsystemen, zogenaamde ideale metingen. Daarbij blijft een deel van de quantumsuperposities behouden. Dit geeft inzicht in het verloop van het meetproces en daarmee de geldigheid van het projectiepostulaat.